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Abstract. The Alloy modeling language has a mathematically rigorous denota-
tional semantics based on relational algebra. Alloy specifications often represent
operations on a state, suggesting a transition-system semantics. Because Alloy
does not intrinsically provide a notion of state, however, this interpretation is
only implicit in the relational-algebra semantics underlying the Alloy Analyzer.
In this paper we demonstrate the subtlety of representing state in Alloy speci-
fications. We formalize a natural notion of transition semantics for state-based
specifications and show examples of specifications in this class for which analy-
sis based on relational algebra can induce false confidence in designs. We char-
acterize the class of facts that guarantees that Alloy’s analysis is sound for state-
transition systems, and offer a sufficient syntactic condition for membership in
this class. We offer some practical evaluation of the utility of this syntactic disci-
pline and show how it provides a foundation for program synthesis from Alloy.

1 Introduction

Alloy [1], a popular relational modeling language, provides a syntax reminiscent of
class-based programming languages, and its semantics is essentially equivalent to first-
order logic with transitive closure. The language is accompanied by an Analyzer; this
explores whether a specification has models through compilation into SAT problems
and checking for satisfiability. Users can employ a graphical browser to explore in-
stances of models and counter-examples to claims.

Though Alloy relations are powerful enough to encompass many common modeling
techniques, Alloy does not have a native executable or machine model. For instance, the
Alloy book says:

Typically an instance represents a state, or a pair of states (corresponding to
execution of an operation), or a execution trace. The language has no built-in
notion of state machines, however, ...
—Software Abstractions [1, page 258]

This is in contrast to B [2] and Z [3], for each of which a notion of state machine is
built into the language. Alloy’s flexibility is one of its main selling points: it supports
a variety of idioms. However, this means the user of Alloy must always be vigilant:
they must first choose an idiom and then ensure that they are constantly faithful to it.
The language itself does not provide any special support for encoding or checking con-
formance to specific idioms. Furthermore, failure to adhere is punished not explicitly



but implicitly: in the best case through unexpected outcomes, and in the worst case by
incorrect decisions based on the Analyzer’s output.

Our first contribution is to show that representing state in Alloy specifications is
more subtle than it appears at first glance. We present what might seem to be the obvious
operational semantics, the one that a designer would intuit based on the descriptions
in, for instance, the Alloy book. But we show that this fails: there are specifications
in this class that are very naturally viewed as representing executions whose logical
(Alloy) semantics is not faithful to the operational semantics. The consequences of
this misalignment are drastic: there are situations in which the Alloy Analyzer will
unavoidably fail to report invalid assertions about the code and situations in which the
Analyzer will give the designer spurious simulations of specified operations that cannot
in fact be implemented.3

Based on this analysis, we offer a proposal to rectify the situation. Concretely, we
give a characterization of the class of facts for which we can guarantee that Alloy’s anal-
ysis is sound for state-transition systems, and we offer a sufficient syntactic condition
on the form of facts that guarantees that they are in this class.4

Experienced Alloy users might argue that they would not be stumped by these ex-
amples (though in our experience, even expert Alloy users do not immediately spot the
problems). One shouldn’t, however, have to be an expert to use a tool safely. We iden-
tify the difficulties and explain why things go wrong, and most importantly prescribe
a discipline which, if followed, ensures that specifications will not go wrong. We give
a precise definition of a state-based modeling idiom with accompanying guarantees,
obeying the discipline “satisfiability iff implementability”.

Specifications of stateful systems are useful in their own right, and they would be
especially useful if they can support not only analysis but also synthesis of executable
code. A synthesizer must, however, maintain a sound relationship between transition
system specifications and the executable code it produces. This is especially interesting
to us due to our prior work on Alchemy [4], a synthesizer that generates executable
libraries over databases from Alloy specifications. Our observations while designing
Alchemy about the difficulties of pinning down the meaning of stateful specifications
inspired this work. But it should be stressed that the problem of reconciling the denota-
tional and operational semantics of a language like Alloy is of fundamental importance
to analysis itself, and is independent of any attempt at automatic code generation.

Contributions To summarize:

– we formalize a natural way to extract transition-system executions from relational-
algebra instances;

– we show examples of specifications in this class for which analysis based on rela-
tional algebra can induce false confidence in designs;

3 It is important to note that these are mismatches relative to the semantics of Alloy [1, Appendix
C] and independent of the bounded-scope used by the Analyzer.

4 Facts are statements used to eliminate invalid models—and hence always true in the resulting
models—whereas assertions are statements that may be true or false.



– we characterize of the class of facts that guarantees that Alloy’s analysis is sound
for state-transition systems and offer a sufficient syntactic condition for ensuring
this behavior; and

– we offer some practical evaluation of the utility of this syntactic discipline.

A by-product of these contributions is a firm foundation for establishing correctness of
a synthesizer for state-based specifications [4, 5].

2 Examples

We use a series of examples to illustrate the potential pitfalls in analysis and mod-
elling of specifications with both relational and stateful interpretations. Figure 1 shows
a sample Alloy specification. Signatures define domains and relations over domains:
this example defines two domains (State and Data) and a relation lastUsed that maps
each element of State to an element of Data (the domains are treated as unary relations):
such a collection of domains and relations determines an instance, or for emphasis, a
relational algebra instance. Facts capture closed formulas that must hold of every in-
stance of the domains and relations specified through signatures. A common idiom for
stateful specifications uses predicates to model operations over pre- and post-instances
of some state object (a prime conventionally connotes the post-state): this example con-
tains an operation updateLastUsed that caches the last datum accessed.

We are interested here in examples in which the Alloy Analyzer (which enforces
the relational semantics) yields results that contradict stateful interpretations of the ex-
ample. The Analyzer supports two kinds of analysis: simulation (running a predicate
to obtain a satisfying instance) and checking (verifying that an assertion is valid of all
instances). Both are important: as Jackson notes [6, page 4], simulation catches errors
of overconstraint, while checking detects underconstraint. The soundness of both forms
is essential to Alloy’s contributions: quoting Jackson [op cit., page 16], “The analysis
is guaranteed to be sound, in the sense that a model returned will indeed be a model.
There are therefore no false alarms, and samples are always legitimate (and demonstrate
consistency of the invariant or operation)”.

In the context of stateful interpretations, simulating a predicate (such as updateLas-
tUsed from Figure 1) should correspond to the execution of some code that induces the
effect of the predicate (updating the cache). Notions of satisfiability and implementabil-
ity for predicates are therefore at the heart of our explorations. While formal definitions
are given later (Section 3), for now we rely on the following informal characterizations.
Let p be a predicate (for example updateLastUsed in Figure 1) in a specification A ; p
has a set of parameters (for example s, s′, and d in updateLastUsed) and a body (the
remainder of the predicate text). We say that p is satisfiable if there is a relational al-
gebra model of the facts of the specification and a binding of the parameters to values
such that the body of p holds. We say that p is implementable if, when viewed as a
procedure, it can be realized as a transition—between nodes bound to s and s′—in a
transition system in which each node is an instance satisfying the facts.

Suppose we ask the Alloy Analyzer to check the newStamp assertion of Figure 1.
This assertion is not valid: there is nothing in the specification as written that requires



sig State {lastUsed : Data}
sig Data {stamp : Clock}
sig Clock {}

// remembering a new most recently used value
pred updateLastUsed [s, s’ : State, d : Data] {

s’.lastUsed = d and s.lastUsed != d}

// statically inconsistent with updateLastUsed
fact storeOne {#lastUsed = 1}

// not valid
assert newStamp { all s, s’ : State| all d : Data |

updateLastUsed [s,s’,d] implies s’.d.stamp != s.d.stamp}

Fig. 1. An Alloy specification that is implementable but not satisfiable.

stamps to be fresh. But rather than generate a countermodel to the assertion, the An-
alyzer will report that newStamp “may be valid.” Since the Analyzer always works
with a bounded domain size it is properly modest in suggesting validity. But in fact the
Analyzer cannot find a countermodel for newStamp even in principle. The problem is
that the updateLastUsed predicate is unsatisfiable. Thus, since no instance satisfies the
antecedent of the implication in newStamp, the assertion is in fact valid.

Why is updateLastUsed not satisfiable? At first glance, it seems to be an entirely
reasonable predicate specification. And indeed the natural implementation of this spec-
ification seems to obey the predicate body as well as the storeOne fact, which expresses
the constraint that exactly one item should be cached via lastUsed: each call to up-
dateLastUsed replaces the value of lastUsed in the current state. Unfortunately, the
specification as written is not satisfiable because the storeOne fact captures more than
the author intended. Under the Alloy semantics, the fact constrains instances to a total
of one lastUsed value across all states, not per state. Indeed, the effect of writing #las-
tUsed = 1 is to constrain Alloy models of this specification to conflate what are really
two distinct states (pre and post), whereas in an imperative implementation only one is
ever active at a time. (If the author had written #lastUsed = 1 as a “signature fact”, that
is, within the paragraph declaring State, then under the Alloy semantics this constraint
would be treated as syntactic sugar for the constraint that for all States s, s.lastUsed has
one item. The above scenario would arise if an author mistakenly moved a signature fact
into a standalone fact.) This highlights the first pitfall to using the Analyzer to reason
about a stateful system:

False confidence in assertion-checking: the Analyzer cannot generate coun-
termodels for invalid assertions about implementable predicates that are unsat-
isfiable under the facts.

Figure 2 shows a richer model of caches, in which each state contains a cache that
maps keys to data. Keys are unique within each state. Adding a cache entry with a new



sig State {cache : set Key→ Data}
sig Key {}
sig Data {}

fact cacheKeysUnique {
all s : State | no k : Key | #s.cache[k] > 1}

// cache d under a key that is not used in s
pred addEntryNewKey [s, s’ : State, d : Data] {

some k : Key | no s.cache[k] and
s’.cache = s.cache + k→d}

fact oddCached {#cache = 1 or #cache = 3 or #cache = 5}

Fig. 2. An Alloy specification that is satisfiable but not implementable.

key inserts a datum into the cache using a key that was unused in the previous state. To
limit the cache size, the specification author includes a fact that the number of cache
lines must always be a small odd number (we use concrete numbers in light of Alloy’s
domain-size restrictions). Under Alloy’s semantics, this predicate is satisfiable. It is not,
however, implementable: using the addEntryNewKey operation, the number of cache
lines will alternate between being odd and even in successive states. The fact, then, is
not an invariant in the implementation. This illustrates another pitfall when reasoning
about stateful specifications:

False confidence in simulation: a design can include a predicate that cannot—
in the context of the stated facts—correspond to any transition at all, yet this
impossibility will go undetected by the analysis, in the sense that the Analyzer
will build a satisfying instance without complaint.

These two examples exploit a similar problem: the Alloy specification includes a
fact on the full model, rather than just facts on individual states. If the specification
happens to talk about multiple points in time, special care must be taken to separate
them. Imperative interpretations, in contrast, view only a single state at a time. In effect,
the implementation views facts at a different level of granularity than the specification.

The lack of alignment between implementability and satisfiability under conven-
tional relational algebra semantics exposes potentially serious problems for lightweight
formal methods. Implementability without satisfiability implies that designers cannot
reason about their designs through their specifications (once a model is unsatisfiable,
the designer does not get useful feedback about its other properties). Satisfiability with-
out implementability implies that assertions verified about the model might not hold of
an actual implementation, so the verification effort has been wasted.



3 Transition Semantics

In order to formalize (and address) the problems with assertion checking over unimple-
mentable predicates, we need a transition-system semantics for relational specifications,
as well as characterizations of relational specifications for which those semantics yield
meaningful results.

An Alloy specification A = (Sigs,Facts,Preds) is given by a set of signatures, facts,
and predicates. It will be convenient to assume that all constraints on signatures are
expressed as elements of Facts (this is without loss of generality).

The signature and facts in a specification provide the setting and constraints under
which predicates and assertions are explored.

3.1 State-Based Frameworks

In a state-based modeling setting the most typical use of facts is to express state invari-
ants, and this will be reflected in the semantics we define. But facts are not necessarily
state-invariants: a naturally-occurring example is the use of trace constraints. For ex-
ample one might impose the constraint that certain properties hold in the initial state of
a system (such a property is not an invariant) or the constraint that all transitions must
be an operation specified by one of the predicates (such a property is not a property of
individual states).

So a transition system must obey two different kinds of constraints: local constraints
on the states, and global constraints across states. We recognize this distinction in the
following definition.

Definition 1. An Alloy framework F = (Sigs,Facts, Inv) is given by a set of signatures,
a set of facts, and a distinguished subset of the facts, the “state invariant” facts.

This designation of certain facts as state invariants is not part of the Alloy language
definition. So for each Alloy specification the semantics we develop in this paper is
parametrized by the author’s intentions as to which constraints in the set Facts are to be
treated as invariants.

Our work on Alchemy [4] shows that identifying the updates required by relational
specifications is the key challenge to interpreting Alloy specifications statefully. In par-
ticular, the relational semantics of arbitrary terms over the pre- and post-state atoms in
predicates allow substantial leeway in how to perform an update. This work aligns rela-
tional and stateful interpretations using some restrictions on signatures and facts. These
require some terminology:

Fix a distinguished signature, which we will call State. We call an Alloy relational
type immutable if it has no occurrences of the State signature.

Definition 2. An Alloy framework is a state-based framework if the type of each de-
clared relation name is either immutable or is a sum of types of the form
State→ A1→ ··· → An where each Ai is immutable.

The restriction that the State signature be the leftmost sig occurring is a matter of no-
tational convenience; the essential requirement is that no relation name have more than



one occurrence of State. For a formal treatment of the notion of type of a relation name
see Edwards et al. [7].

Trace-based reasoning over states is typically done in the context of the Alloy
util/ordering module: if the specification orders the State with this module then the func-
tions first, next, and last are available. In this case the types of these functions violate
the conditions in Definition 2. But such specifications are still considered “state-based”
since first, last, and next are not “declared” in the specification. Indeed the semantics
of these functions will be hard-wired into the transition semantics below.

For the rest of the paper we assume that all specifications are state-based.

3.2 Transition Systems

We base our operational semantics on transition systems. In anticipation of the use of
the util/ordering module, we define ordered transition systems.

To avoid subtleties having to do with underlying data models we take the states in
our transition systems to be relational algebras precisely of the sort that the Alloy Ana-
lyzer constructs; these can be viewed as database instances. In this case the transitions
between states are the obvious database updates transforming one state to another.

If we are to think of the individual instances as each representing one state of the
application we should certainly expect that each of the instances has a unique atom
in the extension of the State signature name. And if we take seriously the notion that
the State signature is supposed to capture the data that changes, we should require that
the extensions of the immutable relation names should be the same in each state. This
motivates the notion of a coherent set of instances, a set of instances comprising the set
of nodes in a transition system.

Definition 3. A set Q of instances is said to be coherent if

– each immutable relation name r has the same interpretation in each instance:
∀I, I′ ∈ Q . I(r) = I′(r),

– each instance has a unique atom in the State signature: ∀I ∈ Q .|I(State)|= 1, and
– no two instances have the same state atom: if I 6= I′ then I(State) 6= I′(State).

We do not assume that the set Q is finite in this definition.

Definition 4. Let F = (Sigs,Facts, Inv) be a framework. A transition system T over the
signatures of F is a pair 〈Q,δ〉, where Q is a coherent set of relational algebra instances
whose signature is given by Sigs, and δ⊆ Q×Q is a transition relation.

T is an ordered transition system if it has a designated linear ordering next on
states and distinguished first and last states.

Note that in the definition above we have not insisted that T obey the constraints im-
posed by the facts of F . In fact we need to do some work to make sense of that notion,
since transition systems are not themselves relational algebras, and so do not come
equipped with a way to evaluate relational algebra expressions and formulas. The result
of this work will be Definition 7.

We turn to the task of defining how to interpret expressions and formulas over F in
a transition system. To do so we use a natural construction that allows us to treat a finite
transition system as a single relational-algebra instance.



Definition 5 (Merging). Let Q be a finite coherent set of instances. The instance tQ
is given by setting, for each relation name r,

tQ (r) =
[
{I(r) | I ∈ Q }

When T = (Q ,δ) is a transition system it will be convenient to write tT for tQ .

Observe that the notion of merging is well-defined only by virtue of our assumption that
the instances in question are coherent. (Indeed, we note that the “

S
” in Definition 5 is

somewhat of a red herring for immutable relations, since they have the same value in
each instance of Q .)

Definition 6. Let T = (Q ,δ) be a transition system.
The value T (e) of an expression e is the set of tuples that is the value of e in the

relational algebra tT .
Say that sentence σ is true in T , written T |=T S σ if σ is true in tT in the ordinary

relational algebra sense, that is, if T |=RA σ

We are now ready for the key definition for the transition-system semantics of a
state-based framework, the notion of a transition system for framework F .

Definition 7. Let F = (Sigs,Facts, Inv) be a framework. A transition system for F is a
transition system T over the signatures of F such that

– each node I satisfies each fact in Inv, and
– tT satisfies each fact not in Inv.

If F includes an ordering on State then we require that T be an ordered transition
system.

Definition 7 highlights the distinction between the facts that are intended to be
viewed as state invariants and those that play the role of global constraints on the sys-
tem. Assertions and the bodies of predicates that define operations must obviously be
able to make reference to more than one state and so must be evaluated globally, that is,
over the merge of the nodes as described in Definition 5.

The Transition Semantics of Predicates For those predicates written in order to define
operations we may define their transition-system semantics as follows.

The meaning of a predicate p is a set of transitions because p can be applied to
different nodes, with different bindings of the parameters, of course, but also because
predicates typically underspecify actions: different implementations of a predicate can
yield different outcomes I′ on the same input I. These should all be considered accept-
able as long as the relation between pre- and post-states is described by the predicate.

Definition 8. Fix an Alloy framework F , and let p be a predicate over F with the prop-
erty that p has among its parameters exactly two variables s and s’ of type State. Let
T be a transition system for F . The meaning JpKT of p in T is the set of triples 〈I, I′,η〉
such that



– η maps the parameters of p into the set of atoms of I (which equals the set of atoms
of I′), mapping the unprimed State parameter to the State-atom of I and the primed
State parameter to the State-atom of I′;

– t{I, I′} makes the body of p true under the environment η.

We say that predicate p is implementable if there exists a transition system T for F such
that JpKT S 6= /0.

Our definition of “implementable” might appear odd at first glance. One might ini-
tially expect that an implementable predicate be defined as one for which there exists
code that carries any I to an I′ such that (I, I′) makes the body of p true. Further consid-
eration suggests that that is too much to ask: we should only insist that our code behave
properly on nodes I that satisfy the pre-conditions of the predicate. But that won’t work
either, since there is no well-defined notion of “pre-condition” in an Alloy specifica-
tion: in the rich language of Alloy predicates primed and unprimed elements mix freely
within expressions and formulas. In this light the definition of “implementable” above
seems to be the most restrictive reading that encompasses the intuitively implementable
operation specifications.

3.3 Transition Systems from Instances

Having developed an “abstract” general notion of transition system for a framework the
obvious question presents itself: what is the relationship of this class of structures to the
relational algebra instances that are the foundation of Alloy?

The relationship is straightforward. In a natural way we can extract transition sys-
tems from relational algebra instances, formalizing the mental construction that Alloy
users do whenever they are confronted with an instance for an analysis constraint in a
state-based framework.

An instance that is intended to capture a transition typically has two atoms in the
extension of the State signature and we read off the pre- and post-instances by projecting
over these two atoms. Similarly for an instance modeling a trace: we think of each state
atom in the instance as being an index into the part of the instance relevant to a particular
transition-system node. (This is exactly what the standard Alloy visualization does, if
one were to select a projection on State.) The next definition formalizes this intuition.
It is convenient for our purposes to do this operation while retaining the state-atom, so
it corresponds to an ordinary database join.

Definition 9 (Localizing). Let I be an instance for a state-based specification and let
a ∈ I(State). The instance Ia is defined by

– Ia(r) = I(r) when r is an immutable relation name;
– Ia(r) = a ./ I(r) when r is a mutable relation name.

Here ./ is standard database join, so that a ./ I(r) is the set of tuples in I(r) whose
entry in the State-column is a.

So any instance yields a transition system. What about the converse? We have seen
in Definition 5 how to merge a transition system to obtain an instance; it remains to
observe that merging and localization interact smoothly.



Lemma 10. Merging and localizing are mutual inverses. That is,

– merging undoes localization: if I is an instance with I(State) = {a j | j ∈ J} then
t{Ia j | j ∈ J}= I;

– localization undoes merging: If Q is a finite coherent set of instances, then the set
of instances obtained by localizing tQ is Q : {(tQ )a | a ∈ (tQ )(State)}= Q .

It would, however, be a mistake to conclude from Lemma 10 that transition systems
can be identified with relational-algebra instances. The central point is that there is no
reason to expect facts to be preserved by merging or by localizing. And the facts that
are viewed by the designer as state invariants are in consequence treated specially by
our semantics: see Definition 7.

Example Consider the relations in Figure 1. An Alloy instance would have this form:

State = {s0, s1, . . .}
Data = {d0, d1, . . . }

Clock = {t0, t1, . . . }
lastUsed = {(s0, d0), (s1, d1), . . .}

stamp = {(d0, t0), (d1, t1), . . . }
When this instance is systematically localized at the values in State we get a family of
instances—

State = {s0}
Data = {d0, d1, . . . }

Clock = {t0, t1, . . . }
lastUsed = {(s0, d0)}

stamp = {(d0, t0), (d1, t1), . . . }

State = {s1}
Data = {d0, d1, . . . }

Clock = {t0, t1, . . .}
lastUsed = {(s1, d1)}

stamp = {(d0, t0), (d1, t1), . . .}

. . .

—which form the nodes in a transition system.

4 Achieving Confidence in Analysis

The notions of localization and merging shed light on the examples from Section 2.
Consider the specification in Figure 1. We observed that the predicate updateLastUsed
was intuitively implementable; it is not hard to see that it is indeed implementable in
the sense of Definition 8. But the predicate is not satisfiable. We understood intuitively
that the source of the difficulty is the fact storeOne; now we can make the precise
observation that the fact storeOne is not preserved under merging.

Next consider the specification in Figure 2. We observed that the predicate addEn-
tryNewKey was (intuitively) not implementable; indeed it is not implementable in the
sense of Definition 8. But the predicate is not satisfiable. This time the reason is the fact
oddCached; this fact precludes implementation. Now we note that the fact oddCached
is not preserved under localization.

These phenomena are perfectly general, as we summarize here.

Theorem 11. Let F = (Sigs,Facts, Inv) be a framework.



1. The following are equivalent:
– The sentences in Inv are preserved by arbitrary merging;
– Every implementable predicate over F is satisfiable.

2. The following are equivalent:
– The sentences in Inv are preserved by arbitrary localization.
– Every satisfiable predicate over F is implementable.

We have noted that the mismatch between satisfiability and implementability man-
ifests itself in practical terms as an obstacle to having confidence in constraint-solving
analyses. Specifically, confidence in assertions-checking arises precisely when counter-
models to assertions in the relational algebra semantics encode countermodels in the
transition semantics. This in turn means that validity in the transition system semantics
implies validity in the relational algebra semantics. Dually, confidence in simulation (of
predicates) arises from a guarantee that a relational algebra instance of a predicate does
indeed correspond to a transition.

The next definition and result formalize these remarks.

Definition 12. Let F be a framework and σ a sentence.

– We write F |=RA σ to mean that σ holds in every relational algebra instance for F .
– We write F |=T S σ to mean that σ holds in every transition system over F , in the

sense of Definition 6.

Then to say we can have confidence in assertions-checking in a framework F is to say
that for any σ, F |=T S σ implies F |=RA σ. To say we can have confidence in simulation
in a framework F is to say that for any σ, F |=RA σ implies F |=T S σ.

Proposition 13. Let F = (Sigs,Facts, Inv) be a framework.

1. The following are equivalent:
– the sentences in Facts are preserved by arbitrary merging.
– for any σ, F |=T S σ implies F |=RA σ. (We can have confidence in assertions-

checking.)
2. The following are equivalent:

– the sentences in Facts are preserved by arbitrary localization.
– for any σ, F |=RA σ implies F |=T S σ. (We can have confidence in predicate

simulation.)

A Sufficient Condition for Reliable Analysis

It may be illuminating to identify the preservation of properties under localization and
merging as being at the heart of sound analysis, but since they are described in semantic
terms they do not in themselves provide much guidance to the specification author. We
next present a simple syntactic criterion that ensures that analysis can be trusted.

The difficulties explored in this paper all arise from the following dichotomy: certain
expressions and formulas are naturally interpreted in individual states from the point
of view of the implementer yet are interpreted globally by Alloy. The latter condition



occurs because all states relevant to a formula being modeled are encoded into each
individual Alloy instance.

Observe that for an immutable relation name r, the meanings of r in the various
nodes of T are identical since Q is coherent. On the other hand, the interpretation mu-
table relations will of course vary across nodes. As a consequence, if e is an expression
involving mutable relations, the value of e computed at a particular node I in T will in
general be different from the “global” value T (e), and similarly for formulas. There is
no surprise here, but this points to the need for care in defining the semantics of predi-
cates and assertions since these typically involve formulas explicitly referring to more
than one state. Indeed, it might suggest that our device of defining semantics in T in
terms of standard semantics in tT does not capture intended usage.

These considerations motivate the next definition.

Definition 14 (Absoluteness). Let e be an expression with at most a single State vari-
able s occurring (more than one occurrence of s is permitted). Say that e is absolute if
the following holds for every transition system T . Let I be the unique node of T such
that I(State) = T (s); then

T (e) = I(e)

So the meaning of an absolute expression survives the pun of viewing a relational
algebra instance as representing a fragment of a transition system. Next we give a suffi-
cient condition for expressions to be absolute, and a sufficient condition for facts to be
preserved and reflected by the passage from instances to transition systems.

Definition 15 (State-bound expressions). A state-bound expression is one for which
every occurrence of a mutable relation name r is within the scope of some state variable
s: that is, for each occurrence of r there is a subterm of the form s. f such that r is a
subterm occurrence of f .

A sentence σ is a state-bound sentence if

– every expression occurring in σ is a state-bound expression, and
– either σ has no occurrence of State variables, or is of the form all s: State . B with

s the only State variable possibly occurring in B.

For example, in Figure 2, the occurrence of s.cache in the fact cacheKeysUnique is
state-bound; but the occurrence of cache in the fact oddCached is not state-bound. Of
course, an expression involving only immutable relations is automatically state-bound.

Theorem 16. State-bound expressions with at most one state-variable are absolute.
State-bound facts are preserved by localizing and by merging.

As an immediate consequence of Proposition 13 and Theorem 16 we obtain the
following sufficient condition for achieving confidence in both assertions-checking and
simulation.

Corollary 17. Let F be a framework whose associated set of facts is state-bound. Then
a predicate is satisfiable if and only if it is implementable.



Constraints in Predicate Bodies Our results have so far constrained the form of facts,
but not of predicates. This is perhaps surprising, as stateful predicate specifications
often contain clauses that seem similar to facts (such as those capturing pre-conditions,
post-conditions, or framing conditions). If is therefore natural to ask what happens if a
predicate body violates our state-bound discipline. The answer is interesting, and sheds
some additional light on the nature of the transition system semantics we have defined.

As a concrete example, let us revisit the updateLastUsed predicate from Figure 1,
but with the problematic fact “inlined” into the body of the predicate.

// remembering a new most recently used value
pred updateLastUsed [s, s’ : State, d : Data] {

#lastUsed = 1 and
s’.lastUsed = d and s.lastUsed != d}

This predicate poses no problems in assertions-checking or in the relationship be-
tween satisfiability and implementability. With the constraint that lastUsed is a single-
ton, the updateLastUsed predicate becomes unimplementable as well as unsatisfiable.
This is a consequence of interpreting the predicate body using relational semantics over
the merge of the individual states. As the inlined fact will never be true in any merged in-
stance, the predicate is not satisfiable in any transition system. Although this may seem
odd, it is consistent with the observations made in the discussion prior to Definition 6.

A similar analysis applies to the situation where a non-state-bound sentence that is
not preserved under localization is used in a predicate body.

5 Advice to Alloy Users

Our results identify a subset of (or idiom over) Alloy specifications that capture transi-
tion systems without sacrificing accuracy of analysis in the relational semantics. Alloy
users who wish to write such specifications should adopt two concrete guidelines:

1. Facts intended to capture state invariants must be preserved under localization and
merging. Writing such facts either as signature constraints on the State signature or
as state-bound sentences (Definition 15) ensures this.

2. Relations that are intended to be mutable (in an implementation) must be declared
within the State signature.

Violating these rules can yield unreliable results from simulation or assertions-checking
relative to the transition semantics defined in this paper.

As an example of these guidelines, imagine a designer trying to model a simple
social networking application. The model captures each person’s friends, as well as the
members of the social network using two signatures:

sig Person {friends : set Person}
sig SocNetwork {members : set Person}

The designer proposes the following predicate to capture making one person (p2) a new
friend of another (p1) (where & denotes intersection and + denotes union):



pred makefriends (s, s’ : SocNetwork, p1, p2 : Person) {
p2 not in p1.friends and
(s’.members) & p1.friends =
(s.members) & p1.friends + p2}

This predicate violates guideline 2: the predicate is trying to update the friends relation,
but that relation is not a component of the SocNetwork signature (which provides the
State signature for this model). Instead, the designer should write the model as

sig Person {}
sig SocNetwork {members : set Person,

friends : Person→ Person}

pred makefriends (s, s’ : SocNetwork, p1, p2 : Person) {
p2 not in s.friends.p1 and
s’.friends[p1] = s.friends[p1] + p2}

This example also helps illustrates a subtlety in guideline 1. Imagine adding the
constraint that all friends are also members. The guideline (specifically, Definition 15)
suggests writing this fact as forall s: State | s.friends in s.members, rather than the log-
ically equivalent, and admittedly simpler, friends in members. Given the equivalence,
the latter form is also preserved under localization and merging, despite the syntactic
mismatch. This reflects the syntactic nature of guideline 1. In practice, we have not
found this difference to be a problem, as discussed in the next section.

6 Validation: From Semantics to Synthesis

Until now, we have presented an idiomatic sub-language of Alloy for which we can
define a coherent operational semantics. We now discuss two practical issues: usability
in the sense of expressiveness for specification, and the potential for synthesis.

Usability While usability can be hard to evaluate in an unbiased manner, we can at
least ask whether existing specifications fall within the idiom defined here. In addition
to several small and synthetic specifications, we are aware of at least two large speci-
fications that fall within this language. The first is a specification of the access-control
and execution behavior of Continue [8], a conference management application in use
by several actual conferences (continue2.cs.brown.edu). Though Continue is co-
authored by the fourth author, the specification was written by students unrelated to the
project several years before the present research. Despite this, their specification nicely
falls entirely within our subset (with all facts treated as state invariants).

The second such specification is for a new collaborative, Web-based programming
environment that is under construction. That specification also has several diverse el-
ements: operations for content creation, sharing, hiding, rating, commenting, and so
forth. Again, the author of the specification was working entirely independently of this
research and was unaware of it. That specification has one fact, of the form forall x:X
exists s:State . . . , that falls outside our subset. We interviewed the author to learn that
this fact was included only to constrain the space of models to improve performance of



the Analyzer; it does not capture a constraint of the logical model (and thus would not
be required for code synthesis).

Synthesis These specifications can also be processed by the Alchemy synthesizer.
It cannot be re-used as a black-box, however, because the operational behavior of
Alchemy is overly broad; for instance, given the specification

sig State {r : A}
sig B {t : A}
pred p {s.r in s’.r + B.t}

Alchemy would be free to modify t (as we discuss in section 7). By restricting the op-
erations Alchemy can generate, we can therefore obtain a synthesizer for specifications
in the language of this paper whose generated code behaves consistently with the se-
mantics defined here. Furthermore, Alchemy already produces systems with reasonable
performance, at least for prototyping purposes [4]; by restricting the space of synthe-
sized operations, we would be further improving its performance.

7 Related Work

We can view our work as providing an adequate semantics for Alloy. The notion of
adequacy is usually credited to Plotkin’s seminal work on the treatment of LCF as a
programming language [9]. In our case, adequacy is a relationship between the denota-
tional world of models and analysis, and the operational world of the implementation.

DynAlloy [10] originates, as does our work, from the observation that Alloy has
only an “implicit” notion of operational semantics. Their response is different: they add
another primitive notion, that of actions, to the language, together with a way of making
partial correctness assertions. The emphasis in the DynAlloy work is on expressiveness
of, and analysis of specifications in, their expanded language. In contrast, our focus is
on the semantics of the common state-based idiom as expressed in pure Alloy.

Massoni, Gheyi and Borba [11] address the question of “conformance” between
object-models and programs. They define a notion of “syntactic coupling” (defined in
the PVS language) that relates object models with representations of run-time heaps.
The main goal is to define and reason about the correctness of refactorings; the emphasis
is on preservation of data properties expressed in the specification. They do not analyze
the way that Alloy predicates induce operations on data.

Three of the present authors, with Yoo, introduced the Alchemy [4] program synthe-
sizer for Alloy. Due to the lack of a crisp operational interpretation of Alloy, Alchemy
relies on ad hoc syntactic criteria to determine the specification author’s intent with
respect to state changes. In contrast, this paper presents a precise operational character-
ization, providing a more rigorous formal footing for Alchemy.

Several efforts have tried to relate proofs to running programs. Bates and Constable
[12] initiated a significant research program on the extraction of computational context,
in the form of programs, from constructive proofs. This effort continues in popular
proof assistants such as Coq [13]. Of course Alloy has no notion of proof structure.
Nevertheless, we share their desire to have the executable code behave consistently
with the outcome of any static analysis.



Our work can be seen as a result toward software synthesis, an effort initiated by
Green [14] and Waldinger and Lee [15] and summarized by Rich and Waters [16]. Our
prior work [4] discusses in detail the relationship between our approach and others.
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