
87

Contextual Equivalence for a Probabilistic Language with

Continuous Random Variables and Recursion

MITCHELL WAND, Northeastern University, USA

RYAN CULPEPPER, Czech Technical University in Prague, Czech Republic

THEOPHILOS GIANNAKOPOULOS, BAE Systems, USA

ANDREW COBB, Northeastern University, USA

We present a complete reasoning principle for contextual equivalence in an untyped probabilistic language.

The language includes continuous (real-valued) random variables, conditionals, and scoring. It also includes

recursion, since the standard call-by-value fixpoint combinator is expressible.

We demonstrate the usability of our characterization by proving several equivalence schemas, including

familiar facts from lambda calculus as well as results specific to probabilistic programming. In particular, we

use it to prove that reordering the random draws in a probabilistic program preserves contextual equivalence.

This allows us to show, for example, that

(letx = e1 in lety = e2 in e0) =ctx (lety = e2 in letx = e1 in e0)

(provided x does not occur free in e2 and y does not occur free in e1) despite the fact that e1 and e2 may have

sampling and scoring effects.

CCS Concepts: • Mathematics of computing → Probability and statistics; • Theory of computation

→ Operational semantics;

Additional Key Words and Phrases: probabilistic programming, logical relations, contextual equivalence

ACM Reference Format:

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual Equivalence

for a Probabilistic Language with Continuous Random Variables and Recursion. Proc. ACM Program. Lang. 2,

ICFP, Article 87 (September 2018), 30 pages. https://doi.org/10.1145/3236782

1 INTRODUCTION

A probabilistic programming language is a programming language enriched with two featuresÐ
sampling and scoringÐthat enable it to represent probabilistic models. We introduce these two
features with an example program that models linear regression.
The first feature, sampling, introduces probabilistic nondeterminism. It is used to represent

random variables. For example, let normal(m, s) be defined to nondeterministically produce a real
number distributed according to a normal (Gaussian) distribution with meanm and scale s .

Here is a little model of linear regression that uses normal to randomly pick a slope and intercept
for a line and then defines f as the resulting linear function:

Authors’ addresses: Mitchell Wand, College of Computer and Information Science, Northeastern University, 360 Huntington

Ave, Room 202WVH, Boston, MA, USA, 02115, wand@ccs.neu.edu; Ryan Culpepper, Faculty of Information Technology,

Czech Technical University in Prague, Thákurova 9, Prague, 16000, Czech Republic, ryanc@ccs.neu.edu; Theophilos

Giannakopoulos, FAST Labs, BAE Systems, 600 District Ave, Burlington, MA, USA, 01803, tgiannak@alum.wpi.edu; Andrew

Cobb, College of Computer and Information Science, Northeastern University, 360 Huntington Ave, Room 202WVH, Boston,

MA, USA, 02115, acobb@ccs.neu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART87

https://doi.org/10.1145/3236782

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236782
https://doi.org/10.1145/3236782

87:2 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

A = normal(0, 10)

B = normal(0, 10)

f(x) = A*x + B

This program defines a distribution on lines, centered on y = 0x + 0, with high variance. This
distribution is called the prior, since it is specified prior to considering any evidence.

The second feature, scoring, adjusts the likelihood of the current execution’s random choices. It
is used to represent conditioning on observed data.

Suppose we have the following data points: {(2.0, 2.4), (3.0, 2.7), (4.0, 3.0)}. The smaller the error
between the result of f and the observed data, the better the choice of A and B. We express these
observations with the following addition to our program:

factor normalpdf(f(2.0)-2.4; 0, 1)

factor normalpdf(f(3.0)-2.7; 0, 1)

factor normalpdf(f(4.0)-3.0; 0, 1)

Here scoring is performed by the factor form, which takes a positive real number to multiply
into the current execution’s likelihood. We use normalpdf(_; 0,1)Ðthe density function of the
standard normal distributionÐto convert the difference between predicted and observed values
into the score. This scoring function assigns high likelihood when the error is near 0, dropping off
smoothly to low likelihood for larger errors.
After incorporating the observations, the program defines a distribution centered near y =

0.3x + 1.8, with low variance. This distribution is often called the posterior distribution, since it
represents the distribution after the incorporation of evidence.

Computing the posterior distributionÐor a workable approximation thereofÐis the task of proba-
bilistic inference. We say that this program has inferred (or sometimes learned) the parameters A and
B from the data. Probabilistic inference encompasses an arsenal of techniques of varied applicability
and efficiency. Some inference techniques may benefit if the program above is transformed to the
following shape:

A = normal(0, 10)

factor Z(A)

B = normal(M(A), S(A))

The transformation relies on the conjugacy relationship between the normal prior for B and
the normal scoring function of the observations. A useful equational theory for probabilistic
programming must incorporate facts from mathematics in addition to standard concerns such as
function inlining.

In this paper we build a foundation for such an equational theory for a probabilistic programming
language. In particular, our language supports

• sampling continuous random variables,
• scoring (soft constraints), and
• conditionals, higher-order functions, and recursion.

Other such languages include Church [Goodman et al. 2008], its descendants such as Venture [Mans-
inghka et al. 2014] and Anglican [Wood et al. 2014], and other languages [Kiselyov and Shan 2009;
Narayanan et al. 2016; Paige and Wood 2014] and language models [Borgström et al. 2016; Huang
and Morrisett 2016; Park et al. 2008]. Our framework is able to justify the transformation above.

In Section 2 we present our model of a probabilistic language, including its syntax and semantics.
We then define our logical relation (Section 3), our CIU relation (Section 4), and contextual ordering
(Section 5); and we prove that all three relations coincide. As usual, contextual ordering is powerful
but difficult to prove directly. The virtue of the logical relation is that it eliminates the need to

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:3

reason about arbitrary syntactic contexts; they are boiled down to their essential components:
substitutions and continuations (evaluation contexts). The CIU relation [Mason and Talcott 1991]
is a further simplification of the logical relation; it offers the easiest way to prove relationships
between specific terms. In Section 6 we define contextual equivalence and use the CIU relation to
demonstrate a catalog of useful equivalence schemas, including βv and let-associativity, as well as
a method for importing first-order equivalences from mathematics. One unusual equivalence is
let-commutativity:

(letx = e1 in lety = e2 in e0) =ctx (lety = e2 in letx = e1 in e0)

(provided x does not occur free in e2 and y does not occur free in e1). This equivalence, while valid
for a pure language, is certainly not valid for all effects (consider, for example, if there were an
assignment statement in e1 or e2). In other words, sampling and scoring are commutative effects.
We conclude with two related work sections: Section 7 demonstrates the correspondence between
our language model and others, notably that of Borgström et al. [2016], and Section 8 informally
discusses other related work.
Throughout the paper, we limit proofs mostly to high-level sketches and representative cases.

Additional details and cases for some proofs can be found in the appendices of the long version of
this paper [Wand et al. 2018].

2 PROBABILISTIC LANGUAGE MODEL

In this section we define our probabilistic language and its semantics. The semantics consists of
three parts:

• A notion of entropy for modeling random behavior.
• An evaluation function that maps a program and entropy to a real-valued result and an
importance weight. We define the evaluation function via an abstract machine. We then
define a big-step semantics and prove it equivalent; the big-step formulation simplifies some
proofs in Section 6.3 by making the structure of evaluation explicit.

• A mapping to measures over the real numbers, calculated by integrating the evaluation
function with respect to the entropy space. A program with a finite, non-zero measure can
be interpreted as an unnormalized probability distribution.

The structure of the semantics loosely corresponds to one inference technique for probabilistic
programming languages: importance sampling. In an importance sampler, the entropy is approxi-
mated by a pseudo-random number generator (PRNG); the evaluation function is run many times
with different initial PRNG states to produce a collection of weighted samples; and the weighted
samples approximate the program’s measureÐeither directly by conversion to a discrete distribution
of results, or indirectly via computed statistical properties such as sample mean, variance, etc.
Our language is similar to that of Borgström et al. [2016], but with the following differences:

• Our language requires let-binding of nontrivial intermediate expressions; this simplifies the
semantics. This restriction is similar to but looser than A-normal form [Sabry and Felleisen
1993].

• Our model of entropy is a finite measure space made of splittable entropy points, rather than
an infinite measure space containing sequences of real numbers.

• Our sample operation models a standard uniform random variable, rather than being param-
eterized over a distribution.

We revisit these differences in Section 7.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:4 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

v ::= x | λx .e | cr Syntactic Values
e ::= v | (v v) | letx = e in e Expressions

| opn (v1, . . . ,vn) | if v then e else e

| sample | factor v

op1 ::= log | exp | real? | | . . . Unary operations
op2 ::= + | − | × | ÷ | < | ≤ | . . . Binary operations
op3 ::= normalinvcdf | normalpdf | . . . Ternary operations
K ::= halt | (x → e)K Continuations

Fig. 1. Syntax of values, expressions, and continuations

2.1 Syntax

The syntax of our language is given in Figure 1. For simplicity, we require sequencing to be made
explicit using let. There is a constant cr for each real number r , and there are various useful
primitive operations.
The sample form draws from a uniform distribution on [0, 1]. Any other standard real-valued

distribution can be obtained by applying the appropriate inverse cumulative distribution function.
For example, sampling from a normal distribution can be expressed as follows:

normal(m, s) ≜ (letu = sample in normalinvcdf(u;m, s))

where normalinvcdf(u;m, s) is the least x such that if X ∼ N(m, s2) then Pr[X ≤ x] = u.
Finally, factor v weights (or łscores”) the current execution by the value v .
The language is untyped, but we express the scoping relations by rules like typing rules. We write

Γ ⊢ e exp for the assertion that e is a well-formed expression whose free variables are contained in
the set Γ, and similarly for values and continuations. The scoping rules are given in Figure 2.

2.2 Modeling Entropy

The semantics uses an entropy component as the source of randomness.We assume an entropy space
S along with its stock measure µS. We use σ and τ to range over values in S. When we integrate

over σ or τ , we implicitly use the stock measure; that is, we write
∫
f (σ) dσ to mean

∫
f (σ) µS(dσ).

Following Culpepper and Cobb [2017], we assume that S has the following properties:

Property 2.1 (Properties of Entropy).

(1) µS(S) = 1
(2) There is a function πU : S→ [0, 1] such that for all measurable f : [0, 1] → R+,

∫
f (πU (σ)) dσ =

∫ 1

0
f (x) λ(dx)

where λ is the Lebesgue measure. That is, πU represents a standard uniform random variable.

(3) There is a surjective pairing function ‘::‘ : S×S→ S, with projections πL and πR , all measurable.

(4) The projections are measure-preserving: for all measurable д : S × S→ R+,
∫
д(πL(σ),πR (σ)) dσ =

∬
д(σ1,σ2) dσ1 dσ2

Since S � S×S and thus S � Sn (n ≥ 1), we can also use entropy to encode non-empty sequences
of entropy values.
One model that satisfies these properties is the space of infinite sequences of real numbers in

[0, 1]; πL and πR take the odd- and even-indexed subsequences, respectively, and πU takes the first
element in the sequence. Another model is the space of infinite sequences of bits, where πL and πR

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:5

x ∈ Γ

Γ ⊢x val

Γ,x ⊢ e exp

Γ ⊢ λx .e val
Γ ⊢ cr val

Γ ⊢v val

Γ ⊢v exp

Γ ⊢v1 val Γ ⊢v2 val

Γ ⊢ (v1 v2) exp

Γ ⊢ e1 exp Γ,x ⊢ e2 exp

Γ ⊢ letx = e1 in e2 exp

Γ ⊢vi val (∀i ∈ {1, . . . ,n})

Γ ⊢ opn (v1, . . . ,vn) exp

Γ ⊢v val Γ ⊢ e1 exp Γ ⊢ e2 exp

Γ ⊢ if v then e1 else e2 exp

Γ ⊢ sample exp
Γ ⊢v val

Γ ⊢ factor v exp

⊢ halt cont
{x} ⊢ e exp ⊢K cont

⊢ (x → e)K cont

Fig. 2. Scoping rules for values, expressions, and continuations

take odd and even subsequences and πU interprets the entire sequence as the binary expansion
of a number in [0, 1]. It is tempting to envision entropy as infinite binary trees labeled with real
numbers in [0, 1], but the pairing function is not surjective.
We also use Tonelli’s Theorem:

Lemma 2.2 (Tonelli). Let f : S × S→ R+ be measurable. Then

∫ (∫
f (σ1,σ2) dσ1

)
dσ2 =

∫ (∫
f (σ1,σ2) dσ2

)
dσ1

2.3 Operational Semantics

2.3.1 Small-Step Semantics. We define evaluation via an abstract machine with a small-step
operational semantics. The semantics rewrites configurations ⟨σ | e | K | τ | w⟩ consisting of:

• an entropy σ (representing the łcurrent” value of the entropy),
• a closed expression e ,
• a closed continuation K ,
• an entropy τ (encoding a stack of entropies, one for each frame of K), and
• a positive real numberw (representing the weight of the current run)

The rules for the semantics are given in Figure 3.
The semantics uses continuations for sequencing and substitutions for procedure calls. Since

letx = e1 in e2 is the only sequencing construct, there is only one continuation-builder. The
first rule recurs into the right-hand side of a let, using the left half of the entropy as its entropy,
and saving the right half for use with e2. The second rule (łreturn”) substitutes the value of the
expression into the body of the let and restores the top saved entropy value for use in the body.
More precisely, we view the third component as an encoded pair of an entropy value and an encoded

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:6 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

⟨σ | letx = e1 in e2 | K | τ | w⟩ → ⟨πL(σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
⟨σ | v | (x → e2)K | σ ′::τ | w⟩ → ⟨σ ′ | e2[v/x] | K | τ | w⟩
⟨σ | ((λx .e) v) | K | τ | w⟩ → ⟨σ | e[v/x] | K | τ | w⟩
⟨σ | sample | K | τ | w⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | w⟩
⟨σ | opn (v1, . . . ,vn) | K | τ | w⟩ → ⟨σ | δ (opn ,v1, . . . ,vn) | K | τ | w⟩ (if defined)
⟨σ | if cr then e1 else e2 | K | τ | w⟩ → ⟨σ | e1 | K | τ | w⟩ (if r > 0)
⟨σ | if cr then e1 else e2 | K | τ | w⟩ → ⟨σ | e2 | K | τ | w⟩ (if r ≤ 0)
⟨σ | factor cr | K | τ | w⟩ → ⟨σ | cr | K | τ | r ×w⟩ (provided r > 0)

Fig. 3. Small-step operational semantics

entropy stack, as mentioned in Section 2.2.1 The entropy stack τ and continuation K are always
updated simultaneously. The return rule can be written using explicit projections as follows:

⟨σ | v | (x → e2)K | τ | w⟩ → ⟨πL(τ) | e2[v/x] | K | πR (τ) | w⟩

Note that in the return rule the current entropy σ is dead. Except for the entropy and weight, these
rules are standard for a continuation-passing interpreter for the λ-calculus with let.

The δ partial function interprets primitive operations. We assume that all the primitive operations
are measurable partial functions returning real values, and with the exception of real?, they are
undefined if any of their arguments is a closure. A conditional expression evaluates to its first
branch if the condition is a positive real constant, its second branch if nonpositive; if the condition
is a closure, evaluation is stuck. Comparison operations and the real? predicate return 1 for truth
and 0 for falsity.
The rule for sample uses πU to extract from the entropy a real value in the interval [0, 1]. The

entropy is split first, to make it clear that entropy is never reused, but the leftover entropy is dead
per the return rule. The rule for factor v weights the current execution by v , provided v is a
positive number; otherwise, evaluation is stuck.
When reduction of an initial configuration halts properly, there are two relevant pieces of

information in the final configuration: the result value and the weight. Furthermore, we are only
interested in real-valued final results. We define evaluation as taking an extra parameter A, a
measurable set of reals. Evaluation produces a positive weight only if the result value is in the
expected set.

eval(σ , e,K ,τ ,w,A) =





w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | r | halt | τ ′ | w ′⟩,

where r ∈ A

0 otherwise

We will also need approximants to eval:

eval(n)(σ , e,K ,τ ,w,A) =





w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | r | halt | τ ′ | w ′⟩

in n or fewer steps, where r ∈ A

0 otherwise

The following lemmas are clear from inspection of the small-step semantics.

Lemma 2.3. If ⟨σ | e | K | τ | w⟩ → ⟨σ ′ | e ′ | K ′ | τ ′ | w ′⟩ then

1We defer the explanation of the initial entropy stack to Section 2.4.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:7

σ ⊢ λx .e ⇓ λx .e, 1 σ ⊢ cr ⇓ cr , 1

σ ⊢ e[v/x] ⇓ v ′
,w

σ ⊢ ((λx .e) v) ⇓ v ′
,w

πL(σ) ⊢ e1 ⇓ v1,w1 πR (σ) ⊢ e2[v1/x] ⇓ v2,w2

σ ⊢ letx = e1 in e2 ⇓ v2,w2 ×w1

δ (opn ,v1, . . . ,vn) = v

σ ⊢ opn (v1, . . . ,vn) ⇓ v, 1

σ ⊢ e1 ⇓ v,w r > 0

σ ⊢ if cr then e1 else e2 ⇓ v,w

σ ⊢ e2 ⇓ v,w r ≤ 0

σ ⊢ if cr then e1 else e2 ⇓ v,w

σ ⊢ sample ⇓ cπU (πL (σ)), 1
r > 0

σ ⊢ factor cr ⇓ cr , r

Fig. 4. Big-step operational semantics

(1) eval(p+1)(σ , e,K ,τ ,w,A) = eval(p)(σ ′
, e ′,K ′

,τ ′,w ′
,A)

(2) eval(σ , e,K ,τ ,w,A) = eval(σ ′
, e ′,K ′

,τ ′,w ′
,A)

Lemma 2.4 (weights are Linear).

(1) Weights can be factored out of reduction sequences. That is,

⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | e ′ | K ′ | τ ′ | w ′⟩,

if and only if for anyw > 0

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | e ′ | K ′ | τ ′ | w ′ ×w⟩

(2) Weights can be factored out of evaluation. That is, for allw > 0,

eval(σ , e,K ,τ ,w,A) = w × eval(σ , e,K ,τ , 1,A),

and similarly for eval(n).

2.3.2 Big-Step Semantics. We regard the small-step semantics as normative, and we use it for
our primary soundness and completeness results. However, for program transformations it is useful
to have a big-step semantics as well. In this section, we define a big-step semantics and characterize
its relation to the small-step semantics.

The big-step semantics is given in Figure 4. It has judgments of the form σ ⊢ e ⇓ v,w , where σ is
a value of the entropy, e is a closed expression, v is a closed value, and w is a weight (a positive
real number). Its intention is that when e is supplied with entropy σ , it returns v with weight
w , consuming some portion (possibly empty) of the given entropy σ . The rules are those of a
straightforward call-by-value λ-calculus, modified to keep track of the entropy and weight.

The translation from big-step to small-step semantics is straightforward:

Theorem 2.5 (Big-Step to Small-Step). If σ ⊢ e ⇓ v,w , then for any K and τ , there exists a σ ′

such that

⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | K | τ | w⟩

Proof. By induction on the definition of ⇓. We will show selected cases.
Case σ ⊢ λx .e ⇓ λx .e, 1 : The required small-step reduction is empty. Similarly for cr .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:8 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Case σ ⊢ sample ⇓ cπU (πL (σ)), 1 : The required reduction is the single step reduction

⟨σ | sample | K | τ | 1⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | 1⟩

Similarly for factor cr and the opn rules.
Case ((λx .e) v) : The rule is

σ ⊢ e[v/x] ⇓ v ′
,w

σ ⊢ ((λx .e) v) ⇓ v ′
,w

By inversion, we have σ ⊢ e[v/x] ⇓ v ′
,w . So the reduction sequence is:

⟨σ | ((λx .e) v) | K | τ | 1⟩
→ ⟨σ | e[v/x] | K | τ | 1⟩
→∗ ⟨σ ′ | v ′ | K | τ | w⟩ by the induction hypothesis

Similarly for the if rules.
Case letx = e1 in e2 : The rule is

πL(σ) ⊢ e1 ⇓ v1,w1 πR (σ) ⊢ e2[v1/x] ⇓ v2,w2

σ ⊢ letx = e1 in e2 ⇓ v2,w2 ×w1

By inversion, we have πL(σ) ⊢ e1 ⇓ v1,w1 and πR (σ) ⊢ e2[v1/x] ⇓ v2,w2. So the required reduc-
tion sequence is:

⟨σ | letx = e1 in e2 | K | τ | 1⟩
→ ⟨πL(σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
→∗ ⟨σ ′ | v1 | (x → e2)K | πR (σ)::τ | w1⟩
→ ⟨πR (σ) | e2[v1/x] | K | τ | w1⟩
→∗ ⟨σ ′′ | v2 | K | τ | w2 ×w1⟩

where the third line follows from the induction hypothesis, and the last line follows from the other
induction hypothesis and the linearity of weights (Lemma 2.4). □

Note that the weak quantifier (łthere exists a σ ′”) corresponds to the fact that the entropy is
dead in the return rule.
In order to prove a converse, we need some additional results about the small-step semantics.

Definition 2.6. Define ⪰ to be the smallest relation defined by the following rules:

Rule 1:

(K ,τ) ⪰ (K ,τ)

Rule 2:

(K ′
,τ ′) ⪰ (K ,τ)

((x → e)K ′
,σ ::τ ′) ⪰ (K ,τ)

Lemma 2.7. Let

⟨σ1 | e1 | K1 | τ1 | w1⟩ → ⟨σ2 | e2 | K2 | τ2 | w2⟩ → . . .

be a reduction sequence in the operational semantics. Then for each i in the sequence either

a. there exists a smallest j ≤ i such that ej is a value and Kj = K1 and τj = τ1, or

b. (Ki ,τi) ⪰ (K1,τ1)

Proof. See the long version [Wand et al. 2018, Appendix A]. □

The next result is an interpolation theorem, which imposes structure on reduction sequences:
any terminating computation starting with an expression e begins by evaluating e to a value v and
then sending that value to the continuation K .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:9

Theorem 2.8 (Interpolation Theorem). If

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

then there exists a smallest n such that for some quantities σ ′, v , andw ′,

⟨σ | e | K | τ | w⟩ →n ⟨σ ′ | v | K | τ | w ′ ×w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

Proof. If K = halt, then the result is trivial. Otherwise, apply the invariant of the preceding
lemma, observing that (halt,τ ′) ⪰̸ (K ,τ) and that weights are multiplicative. □

Note that both Lemma 2.7 and Theorem 2.8 would be false if our language contained jumping
control structures like call/cc.

Finally, we show that in the interpolation theorem, σ ′, v , andw ′ are independent of K .

Theorem 2.9 (Genericity Theorem). Letw1 > 0 and let n be the smallest integer such that for

some quantities σ ′, v , andw ′,

⟨σ | e | K1 | τ1 | w1⟩ →
n ⟨σ ′ | v | K1 | τ1 | w

′ ×w1⟩

then for any K2, τ2, andw2,

⟨σ | e | K2 | τ2 | w2⟩ →
n ⟨σ ′ | v | K2 | τ2 | w

′ ×w2⟩

Proof. Let R be the smallest relation defined by the rules

((K1,τ1), (K2,τ2)) ∈ R
((K ,τ), (K ′

,τ ′)) ∈ R

(((x → e)K ,σ ::τ), ((x → e)K ′
,σ ::τ ′)) ∈ R

Extend R to be a relation on configurations by requiring the weights to be related by a factor
of w2/w1 and the remaining components of the configurations to be equal. It is easy to see, by
inspection of the small-step rules, that R is a bisimulation over the first n steps of the given reduction
sequence. □

We are now ready to state the converse of Theorem 2.5.

Definition 2.10. We say that a configuration ⟨σ | e | K | τ | w⟩ halts iff

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w ′⟩

for some σ ′, v , τ ′ andw ′.

Theorem 2.11 (Small-Step to Big-Step). If

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩,

then there exist σ ′, v ′ andw ′ such that

σ ⊢ e ⇓ v ′
,w ′

and

⟨σ ′′ | v ′ | K | τ | w ′ ×w⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′′ | w ′′⟩

Proof. Given

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

apply the Interpolation Theorem (Theorem 2.8) to get n, σ ′, v , andw ′ such that

⟨σ | e | K | τ | w⟩ →n ⟨σ ′ | v | K | τ | w ′ ×w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

This gives us the second part of the conclusion. To get the first part, we proceed by (course-of-
values) induction on n, and then by cases on e .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:10 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Case λx .e : For configurations of the form ⟨σ | λx .e | K | τ | w⟩, the expression is already a value,
so n is 0. So set v = λx .e and w ′

= 1, and observe that σ ⊢ λx .e ⇓ λx .e, 1, as desired. The case of
constants cr is similar.
Case sample :We know

⟨σ | sample | K | τ | w⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | w⟩

so the value length is 1, and we also have σ ⊢ sample ⇓ cπU (πL (σ)), 1, as desired. The cases of factor
and of opn are similar.
Case ((λx .e) v) : Assume that the value length of ⟨σ | ((λx .e) v) | K | τ | w⟩ is n + 1. So we

have

⟨σ | ((λx .e) v) | K | τ | w⟩ → ⟨σ | e[v/x] | K | τ | w⟩ →n ⟨σ ′ | v ′ | K | τ | w ′ ×w⟩

By induction, we have σ ⊢ e[v/x] ⇓ v ′
,w ′. Hence, by the big-step rule for λ-expressions, we

have σ ⊢ ((λx .e) v) ⇓ v ′
,w ′, as desired. The cases for conditionals are similar.

Case letx = e1 in e2 : Assume the value length of ⟨σ | letx = e1 in e2 | K | τ | w⟩ is n. Then
the first n steps of its reduction sequence must be

⟨σ | letx = e1 in e2 | K | τ | w⟩
→ ⟨πL(σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
→m ⟨σ ′ | v1 | (x → e2)K | πR (σ)::τ | w1 ×w⟩
→ ⟨πR (σ)::τ | e2[v1/x] | K | τ | w1 ×w⟩
→p ⟨σ ′′ | v | K | τ | w2 ×w1 ×w⟩

wherem andp are the value lengths of the configurations on the second and fourth lines, respectively.
So n =m + p + 2, and we can apply the induction hypothesis to the two relevant configurations.
Applying the induction hypothesis twice, we get

πL(σ) ⊢ e1 ⇓ v1,w1 and πR (σ) ⊢ e2[v1/x] ⇓ v2,w2 .

Hence, by the big-step rule for let, we conclude that

σ ⊢ letx = e1 in e2 ⇓ v,w2 ×w1

as desired. □

2.4 From Evaluations to Measures

Up to now, we have considered only single runs of the machine, using particular entropy values.
To obtain the overall meaning of the program we need to integrate over all possible values of the
entropies σ and τ :

Definition 2.12. The measure of e and K is the measure on the reals defined by

µ(e,K ,A) =
∬

eval(σ , e,K ,τ , 1,A) dσ dτ

for each measurable set A of the reals.

This measure is similar to both Culpepper and Cobb’s µe (A) and Borgström et al.’s [[e]]S(A), but
whereas they define measures on arbitrary syntactic values, our µ(e,K ,−) is a measure on the reals.
Furthermore, whereas their measures represent the meanings of intermediate expressions, our
measureÐdue to the inclusion of the continuation argument KÐrepresents the meanings of whole
programs.

The simplicity of the definition above relies on the mathematical trick of encoding entropy stacks
as entropy values; if we represented stacks directly the number of integrals would depend on the
stack depth. Note that even for the base continuation (K = halt) we still integrate with respect

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:11

to both σ and τ . Since S ≇ S0, there is no encoding for an empty stack as an entropy value; we
cannot just choose a single arbitrary τinit because µS({τinit}) = 0. But since evaluation respects the
stack discipline, it produces the correct result for any initial τinit. So we integrate over all choices
of τinit, and since µS(S) = 1 the empty stack łdrops out” of the integral.

As before, we will also need the approximants:

µ(n)(e,K ,A) =
∬

eval(n)(σ , e,K ,τ , 1,A) dσ dτ

For these integrals to be well-defined, of course, we need to know that eval and its approximants
are measurable.

Lemma 2.13 (eval is measurable). For any e , K ,w ≥ 0, A ∈ ΣR, and n, eval(σ , e,K ,τ ,w,A) and

eval(n)(σ , e,K ,τ ,w,A) are measurable in σ and τ .

Proof. The proof is based on the proof from Borgström et al. [2017]. See the long version [Wand
et al. 2018, Appendix A] for more details. □

The next lemma establishes some properties of µ and the approximants µ(n). In particular, it
shows that µ is the limit of the approximants.

Lemma 2.14 (measures are monotonic). In the following, e and K range over closed expressions

and continuations, and let A range over measurable sets of reals.

(1) µ(e,K ,A) ≥ 0
(2) for anym, µ(m)(e,K ,A) ≥ 0
(3) ifm ≤ n, then µ(m)(e,K ,A) ≤ µ(n)(e,K ,A) ≤ µ(e,K ,A)

(4) µ(e,K ,A) = supn{µ
(n)(e,K ,A)}

Finally, the next lemma’s equations characterize how the approximant and limit measures, µ(n)

and µ, behave under the reductions of the small-step machine. Almost all the calculations in
Section 3 depend only on these equations.

Lemma 2.15. The following equations hold for approximant measures:

µ(p+1)(letx = e1 in e2,K ,A) = µ(p)(e1, (x → e2)K ,A)

µ(p+1)(v, (x → e)K ,A) = µ(p)(e[v/x],K ,A)

µ(p+1)((λx .e v),K ,A) = µ(p)(e[v/x],K ,A)

µ(p+1)(opn (v1, . . . ,vn),K ,A) = µ(p)(δ (opn ,v1, . . . ,vn),K ,A) if defined

µ(p+1)(if cr then e1 else e2,K ,A) = µ(p)(e1,K ,A) if r > 0

µ(p+1)(if cr then e1 else e2,K ,A) = µ(p)(e2,K ,A) if r ≤ 0

µ(p+1)(sample,K ,A) =
∫ 1

0
µ(p)(cr ,K ,A) dr

µ(p+1)(factor cr ,K ,A) = r × µ(p)(cr ,K ,A) if r > 0

In addition, the analogous index-free equations hold for the unapproximated (limit) measure µ(−,−,−).

In general, the proofs of the equations of Lemma 2.15 involve unfolding the definition of the
measure and applying Lemma 2.3 under the integral. The proof for let is representative:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:12 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Proof for let.

µ(p+1)(letx = e1 in e2,K ,A)

=

∬
eval(p+1)(σ , letx = e1 in e2,K ,τ , 1,A) dσ dτ

=

∬
eval(p)(πL(σ), e1, (x → e2)K ,πR (σ)::τ , 1,A) dσ dτ (Lemma 2.3)

=

∭
eval(p)(σ ′

, e1, (x → e2)K ,σ
′′::τ , 1,A) dσ ′dσ ′′dτ (Property 2.1.4 on σ)

=

∬
eval(p)(σ ′

, e1, (x → e2)K ,πL(τ
′)::πR (τ

′), 1,A) dσ ′dτ ′ (Property 2.1.4 on τ ′)

=

∬
eval(p)(σ ′

, e1, (x → e2)K ,τ
′
, 1,A) dσ ′dτ ′ (πL(τ

′)::πR (τ
′) = τ ′)

= µ(p)(e1, (x → e2)K ,A)

□

The proof for factor additionally uses linearity (Lemma 2.4), and the proof for sample addition-
ally uses Property 2.1.2.

So far, our semantics speaks directly only about the meanings of whole programs. In the following
sections, we develop a collection of relations for expressions and ultimately show that they respect
the contextual ordering relation on expression induced by the semantics of whole programs.

3 THE LOGICAL RELATION

In this section, we define a step-indexed logical relation on values, expressions, and continuations,
and we prove the Fundamental Property (a form of reflexivity) for our relation.
We begin by defining step-indexed logical relations on closed values, closed expressions, and

continuations (which are always closed) as follows:

(v1,v2) ∈ Vn ⇐⇒ v1 = v2 = cr for some r
∨ (v1 = λx .e ∧v2 = λx .e ′

∧ (∀m < n)(∀v,v ′)[(v,v ′) ∈ Vm =⇒ (e[v/x], e ′[v ′/x]) ∈ Em])

(e, e ′) ∈ En ⇐⇒ (∀m ≤ n)(∀K ,K ′)(∀A ∈ ΣR)

[(K ,K ′) ∈ Km =⇒ µ(m)(e,K ,A) ≤ µ(e ′,K ′
,A)]

(K ,K ′) ∈ Kn ⇐⇒ (∀m ≤ n)(∀v,v ′)(∀A ∈ ΣR)

[(v,v ′) ∈ Vm =⇒ µ(m)(v,K ,A) ≤ µ(v ′
,K ′
,A)]

The definitions are well-founded because V− refers to E− at strictly smaller indexes. Note that for
all n, Vn ⊇ Vn+1 ⊇ . . ., and similarly for E and K. That is, at higher indexes the relations make
more distinctions and thus relate fewer things.
We use γ to range over substitutions of closed values for variables, and we define Gn by lifting

Vn to substitutions as follows:

(γ ,γ ′) ∈ GΓ

n ⇐⇒ dom(γ) = dom(γ ′) = Γ

∧ ∀x ∈ Γ, (γ (x),γ ′(x)) ∈ Vn

Last, we define the logical relations on open terms. In each case, the relation is on terms of the
specified sort that are well-formed with free variables in Γ:

(v,v ′) ∈ VΓ ⇐⇒ (∀n)(∀γ ,γ ′)[(γ ,γ ′) ∈ GΓ

n =⇒ (vγ ,v ′γ ′) ∈ Vn]

(e, e ′) ∈ EΓ ⇐⇒ (∀n)(∀γ ,γ ′)[(γ ,γ ′) ∈ GΓ

n =⇒ (eγ , e ′γ ′) ∈ En]

(K ,K ′) ∈ K ⇐⇒ (∀n)(K ,K ′) ∈ Kn

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:13

x ∈ Γ

(x ,x) ∈ VΓ

(e, e ′) ∈ EΓ,x

(λx .e, λx .e ′) ∈ VΓ
(cr , cr) ∈ V

Γ
(v,v ′) ∈ VΓ

(v,v ′) ∈ EΓ

(v1,v
′
1) ∈ V

Γ (v2,v
′
2) ∈ V

Γ

((v1 v2), (v
′
1 v

′
2)) ∈ E

Γ

(e1, e
′
1) ∈ E

Γ (e2, e2) ∈ E
Γ,x

(letx = e1 in e2, letx = e ′1 in e ′2) ∈ E
Γ

(vi ,v
′
i) ∈ V

Γ (i ∈ {1, . . . ,k})

(opk (v1, . . . ,vk), op
k (v ′

1, . . . ,v
′
k)) ∈ E

Γ

(v,v ′) ∈ VΓ (e1, e
′
1) ∈ E

Γ (e2, e2) ∈ E
Γ

(if v then e1 else e2, if v ′ then e ′1 else e ′2) ∈ E
Γ

(sample, sample) ∈ E
(v,v ′) ∈ VΓ

(factor v, factor v ′) ∈ EΓ

(halt, halt) ∈ K
(e1, e2) ∈ E

{x } (K ,K ′) ∈ K

((x → e)K , (x → e ′)K ′) ∈ K

Fig. 5. Compatibility rules for the logical relation

The limit relation K is not indexed by Γ because we work only with closed continuations.
Our first goal is to show the so-called fundamental property of logical relations:

Γ ⊢ e exp =⇒ (e, e) ∈ EΓ

We begin with a series of compatibility lemmas. These show that the logical relations form a
congruence under (łare compatiblewith”) the scoping rules of values, expressions, and continuations.
Note the correspondence between the scoping rules of Figure 2 and the compatibility rules of
Figure 5.

Lemma 3.1 (Compatibility). The implications summarized as inference rules in Figure 5 hold.

Most parts of the lemma follow by general reasoning about the λ-calculus, the definitions of the
logical relations, and calculations involving µ(n) and µ using Lemma 2.15. The proof for application
is representative:

Proof for app. Wemust show that if (v1,v
′
1) ∈ V

Γ and (v2,v
′
2) ∈ V

Γ , then ((v1 v2), (v
′
1 v

′
2)) ∈ E

Γ .

Choose n, and assume (γ ,γ ′) ∈ GΓ

n . Then (v1γ ,v
′
1γ

′) ∈ Vn and (v2γ ,v
′
2γ

′) ∈ Vn . We must show
((v1γ v2γ), (v

′
1γ

′ v ′
2γ

′)) ∈ En .

If v1γ is of the form cr , then µ(m)(v1γ ,K ,A) = 0 for anym, K , and A, so the conclusion holds by
Lemma 2.14.

Otherwise, assume v1γ is of the form λx .e , and so v ′
1γ

′ is of the form λx .e ′. So choosem ≤ n and
A, and let (K ,K ′) ∈ Km . We must show that

µ(m)((λx .eγ v2γ),K ,A) ≤ µ((λx .e ′γ ′ v ′
2γ

′),K ′
,A).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:14 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Ifm = 0 the left-hand side is 0 and the inequality holds trivially. So considerm ≥ 1. Since all
the relevant terms are closed and the relations on closed terms are antimonotonic in the index, we
have (λx .eγ , λx .e ′γ ′) ∈ Vm and (v1γ ,v

′
1γ

′) ∈ Vm−1. Therefore (eγ [v2γ/x], e
′γ ′[v ′

2γ
′/x]) ∈ Em−1.

Now, ⟨σ | (λx .eγ v2γ) | K | τ | w⟩ → ⟨σ | eγ [v2γ/x] | K | τ | w⟩, and similarly for the primed
side. So we have

µ(m)((λx .eγ v2γ),K ,A) = µ(m−1)(eγ [v2γ/x],K ,A) (Lemma 2.15)

≤ µ(e ′γ ′[v ′
2γ

′/x],K ′
,A) (by (eγ [v2γ/x], e

′γ ′[v ′
2γ

′/x]) ∈ Em−1)

= µ((λx .e ′γ ′ v ′
2γ

′),K ′
,A)

□

More detailed proofs can be found in the long version [Wand et al. 2018, Appendix A].
Now we can prove the Fundamental Property:

Theorem 3.2 (Fundamental Property).

(1) Γ ⊢ e exp =⇒ (e, e) ∈ EΓ

(2) Γ ⊢v val =⇒ (v,v) ∈ VΓ

(3) ⊢K cont =⇒ ∀n, (K ,K) ∈ Kn

Proof. By induction on the derivation of Γ ⊢ e exp, etc, applying the corresponding compatibility
rule from Lemma 3.1 at each point. □

The essential properties of the logical relation we wish to hold are soundness and completeness
with respect to the contextual ordering. We address these properties in Section 5 after taking a

detour to define another useful intermediate relation, CIUΓ , and establish its equivalence to EΓ .

4 CIU ORDERING

The CIU (łclosed instantiation of uses”) ordering of two terms asserts that they yield related
observable behavior under a single substitution and a single continuation. We take łobservable
behavior” to be a program’s measure over the reals, as we did for the logical relations.

Definition 4.1.

(1) If e and e ′ are closed expressions, then (e, e ′) ∈ CIU iff for all closed K and measurable A,
µ(e,K ,A) ≤ µ(e ′,K ,A).

(2) If Γ ⊢ e exp and Γ ⊢ e ′ exp, then (e, e ′) ∈ CIUΓ iff for all closing substitutionsγ , (eγ , e ′γ) ∈ CIU.

Since it requires considering only a single substitution and a single continuation rather than

related pairs, it is often easier to prove particular expressions related by CIUΓ . But in fact, this
relation coincides with the logical relation, as we demonstrate now. One direction is an easy
consequence of the Fundamental Property.

Lemma 4.2 (E ⊆ CIU). If (e, e ′) ∈ EΓ then (e, e ′) ∈ CIUΓ .

Proof. Choose a closing substitutionγ , a closed continuationK , andA ∈ ΣR. By the Fundamental

Property, we have for all n, (γ ,γ) ∈ GΓ

n and (K ,K) ∈ Kn . Therefore, for all n, µ
(n)(eγ ,K ,A) ≤

µ(e ′γ ,K ,A). So

µ(eγ ,K ,A) = sup
n
{µ(n)(eγ ,K ,A)} ≤ µ(e ′γ ,K ,A).

□

In the other direction:

Lemma 4.3 (EΓ ◦ CIUΓ ⊆ EΓ). If (e1, e2) ∈ E
Γ and (e2, e3) ∈ CIU

Γ , then (e1, e3) ∈ E
Γ .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:15

Proof. Choose n and (γ ,γ ′) ∈ Gn
Γ
. We must show that (e1γ , e3γ

′) ∈ EΓn . So choose m ≤ n,

(K ,K ′) ∈ Km , and A ∈ ΣR. Now we must show µ(m)(e1γ ,K ,A) ≤ µ(e3γ
′
,K ′
,A).

We have (e1, e2) ∈ E
Γ and (γ ,γ ′) ∈ Gn

Γ
, so (e1γ , e2γ

′) ∈ En , and bym ≤ nwe have (e1γ , e2γ
′) ∈ Em .

So

µ(n)(e1γ ,K ,A) ≤ µ(e2γ
′
,K ′
,A) (by (e1γ , e2γ

′) ∈ Em)

≤ µ(e3γ
′
,K ′
,A) (by (e2, e3) ∈ CIU)

Therefore (e1, e3) ∈ E
Γ . □

Lemma 4.4 (CIU ⊆ E). If (e, e ′) ∈ CIUΓ then (e, e ′) ∈ EΓ .

Proof. Assume (e, e ′) ∈ CIUΓ . By the Fundamental Property, we know (e, e) ∈ EΓ . So we have

(e, e) ∈ EΓ and (e, e ′) ∈ CIUΓ . Hence, by Lemma 4.3, (e, e ′) ∈ EΓ . □

Theorem 4.5. (e, e ′) ∈ CIUΓ iff (e, e ′) ∈ EΓ .

Proof. Immediate from Lemmas 4.2 and 4.4. □

5 CONTEXTUAL ORDERING

Finally, we arrive at the contextual order relation. We define the contextual ordering as the largest
preorder that is both adequateÐthat is, it distinguishes terms that have different observable behavior
by themselvesÐand compatibleÐthat is, closed under context formation, and we show that the
contextual ordering, the CIU ordering, and the logical relation all coincide. Thus in order to show
two terms contextually ordered, it suffices to use the friendlier machinery of the CIU relation.

Definition 5.1 (CTXΓ). CTX is the largest family of relations RΓ such that:

(1) R is adequate, that is, if Γ = ∅, then (e, e ′) ∈ RΓ implies that for all measurable subsets A of
the reals, µ(e, halt,A) ≤ µ(e ′, halt,A).

(2) For each Γ, RΓ is a preorder.
(3) The family of relations R is compatible, that is, it is closed under the type rules for expressions:
(a) If (e, e ′) ∈ RΓ,x , then (λx .e, λx .e ′) ∈ RΓ .
(b) If (v1,v

′
1) ∈ RΓ and (v2,v

′
2) ∈ RΓ , then ((v1 v2), (v

′
1 v

′
2)) ∈ RΓ .

(c) If (v,v ′) ∈ RΓ , then (factor v, factor v ′) ∈ RΓ .
(d) If (e1, e

′
1) ∈ RΓ and (e2, e

′
2) ∈ RΓ,x ,

then (letx = e1 in e2, letx = e ′1 in e ′2) ∈ RΓ .

(e) If (v1,v
′
1) ∈ RΓ , . . . , (vn ,v

′
n) ∈ RΓ ,

then (opn (v1, . . . ,vn), op
n (v ′

1, . . . ,v
′
n)) ∈ RΓ .

(f) If (v,v ′) ∈ RΓ , (e1, e
′
1) ∈ RΓ , and (e2, e

′
2) ∈ RΓ ,

then (if v then e1 else e2, if v ′ then e ′1 else e ′2) ∈ RΓ .

Note, as usual, that the union of any family of relations satisfying these conditions also satisfies
these conditions, so the union of all of them is the largest such family of relations.

We prove thatEΓ ,CIUΓ , andCTXΓ by first showing thatEΓ ⊆ CTXΓ and then thatCTXΓ ⊆ CIUΓ .

Then, having caught CTXΓ between EΓ and CIUΓÐtwo relations that we have already proven
equivalentÐwe conclude that all of the relations coincide.

First, we must show that EΓ ⊆ CTXΓ . The heart of that proof is showing that EΓ is compatible
in the sense of Definition 5.1. That is nearly handled by the existing compatibility rules for EΓ

(Lemma 3.1), except for an occasional mismatch between expressions and valuesÐthat is, between

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:16 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

E
Γ and VΓ in the rules. So we need a lemma to address the mismatch (Lemma 5.3), which itself

needs the following lemma due to Pitts [2010].

Lemma 5.2. If (K ,K ′) ∈ Kn and (v,v ′) ∈ Vn , then

((z → (z v))K , (z → (z v ′))K ′) ∈ Kn+2

Proof. See the long version [Wand et al. 2018, Appendix A]. □

Lemma 5.3. For all closed values v , if (v,v ′) ∈ E, then (v,v ′) ∈ V.

Proof. We will show that for all closed values v , v ′, if (v,v ′) ∈ En+3, then (v,v ′) ∈ Vn , from
which the lemma follows.

If v = cr and v ′
= cr ′ , then r = r ′ and thus (cr , cr ′) ∈ V because otherwise we would

have µ(cr , halt, {r }) = I {r }(r) = 1 and µ(cr ′, halt, {r }) = I {r }(r
′) = 0, violating the assumption

(cr , cr ′) ∈ E.
If only one of v and v ′ is a constant, then (v,v ′) ∈ En+3 is impossible, since constants and

lambda-expressions are distinguishable by real? (which requires 3 steps to do so).
So assume v = λx .e and v ′

= λx .e ′. To establish (v,v ′) ∈ Vn , choosem < n and (u,u ′) ∈ Vm .
We must show that (e[u/x], e ′[u ′/x]) ∈ Em . To do that, choose p ≤ m, (K ,K ′) ∈ Kp , and A ∈ ΣR.
We must show that

µ(p)(e[u/x],K ,A) ≤ µ(e ′[u ′/x],K ′
,A)

LetK1 = (f → (f u))K andK ′
1 = (f → (f u ′))K ′. By monotonicity, (u,u ′) ∈ Vp . By Lemma 5.2,

(K ′
1,K

′
1) ∈ Kp+2. Furthermore, p ≤ m < n, so p + 2 ≤ n + 1 and therefore (λx .e, λx .e ′) ∈ Ep+2. And

furthermore, we have

⟨σ | λx .e | K1 | τ | w⟩ → ⟨σ | (λx .e u) | K | τ | w⟩ → ⟨σ | e[u/x] | K | τ | w⟩

and similarly on the primed side.
We can put the results together to get

µ(p)(e[u/x],K ,A) = µ(p+2)(λx .e,K1,A)

≤ µ(λx .e ′,K ′
1,A)

= µ(e ′[u ′/x],K ′
,A)

□

Theorem 5.4. EΓ ⊆ CTXΓ .

Proof. Wewill show that E forms a family of reflexive preorders that is adequate and compatible.

Each EΓ is reflexive by the Fundamental Property, and is a preorder because it is equal to CIUΓ ,
which is a preorder. To show that it is adequate, observe that (halt, halt) ∈ K by Lemma 3.1,
hence for any measurable subset A of reals, (e, e ′) ∈ EΓ implies µ(e, halt,A) = µ(e ′, halt,A).

The E-compatibility rules (Lemma 3.1) are almost exactly what is needed for CTX-compatibility.
The exceptions are in the application, operation, if, and factor rules where their hypotheses refer
to VΓ rather than EΓ . We fill the gap with Lemma 5.3. We show how this is done for factor v ; the
other cases are similar.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:17

(v,v ′) ∈ EΓ =⇒ (v,v ′) ∈ CIUΓ

=⇒ (∀γ)((vγ ,v ′γ) ∈ CIU∅)

=⇒ (∀γ)((vγ ,v ′γ) ∈ E∅)

=⇒ (∀γ)((vγ ,v ′γ) ∈ V∅) (Lemma 5.3)

=⇒ (∀γ)((factor vγ , factor v ′γ) ∈ E∅) (Lemma 3.1)

=⇒ (∀γ)((factor vγ , factor v ′γ) ∈ CIU∅)

=⇒ (factor v, factor v ′) ∈ CIUΓ

=⇒ (factor v, factor v ′) ∈ EΓ

□

Next, we must show that CTXΓ ⊆ CIUΓ by induction on the closing substitution and then
induction on the continuation. We use the following two lemmas to handle the closing substitution.

Lemma 5.5. If Γ,x ⊢ e exp and Γ ⊢v exp, then

(e[v/x], (λx .e v)) ∈ CIUΓ and ((λx .e v), e[v/x]) ∈ CIUΓ
.

Proof. Let γ be a closing substitution for Γ. Then for any σ , closed K , andw , by Lemmas 2.15
and 2.14.4 we have

⟨σ | (λx .eγ vγ) | K | τ | w⟩ → ⟨σ | eγ [vγ/x] | K | τ | w⟩

Therefore for any A ∈ ΣR, µ((λx .eγ vγ),K ,A) = µ(eγ [vγ/x],K ,A). □

Lemma 5.6. If (e, e ′) ∈ CTXΓ,x , and (v,v ′) ∈ CTXΓ , then (e[v/x], e ′[v ′/x]) ∈ CTXΓ .

Proof. From the assumptions and the compatibility of CTX, we have

((λx .e v), (λx .e ′ v ′)) ∈ CTXΓ (1)

So now we have:

(e[v/x], (λx .e v)) ∈ CIUΓ (Lemma 5.5)

=⇒ (e[v/x], (λx .e v)) ∈ CTXΓ (CIUΓ ⊆ CTXΓ)

=⇒ (e[v/x], (λx .e ′ v ′)) ∈ CTXΓ (Equation (1) and transitivity of CTXΓ)

=⇒ (e[v/x], e ′[v ′/x]) ∈ CTXΓ (Lemma 5.5 and transitivity of CTXΓ)

□

Now we are ready to complete the theorem. Here we need to use CIU rather than E, so that we
can deal with only one continuation rather than two.

Theorem 5.7 (CTXΓ ⊆ CIUΓ). If (e, e ′) ∈ CTXΓ , then (e, e ′) ∈ CIUΓ

Proof. By the preceding lemma, we have (eγ , e ′γ) ∈ CTX. So it suffices to show that for all

A ∈ ΣR, if (e, e
′) ∈ CTX∅ and ⊢K cont, then µ(e,K ,A) = µ(e ′,K ,A).

The proof proceeds by induction on K such that ⊢K cont. The induction hypothesis on K is: for

all closed e , e ′, if (e, e ′) ∈ CTX∅, then µ(e,K ,A) = µ(e ′,K ,A).

If K = halt and (e, e ′) ∈ CTX∅, then µ(e, halt,A) = µ(e ′, halt,A) by the adequacy of CTX∅.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:18 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

((λx .e) v) =ctx e[v/x] (βv)

letx = v in e =ctx e[v/x] (letv)

letx = e in x =ctx e (letid)

op (v1, · · · ,vn) =ctx v where δ (op,v1, · · · ,vn) = v (δ)

letx2 = (letx1 = e1 in e2) in e3 =ctx letx1 = e1 in (letx2 = e2 in e3) (assoc)

letx1 = e1 in letx2 = e2 in e3 =ctx letx2 = e2 in letx1 = e1 in e3 (commut)

In (assoc), x1 < FV (e3). In (commut), x1 < FV (e2) and x2 < FV (e1).

Fig. 6. An incomplete catalog of equivalences

For the induction step, consider (x → e1)K , where x ⊢ e1 exp. Choose (e, e
′) ∈ CTX∅. We must

show µ(e, (x → e1)K ,A) ≤ µ(e ′, (x → e1)K ,A).
By the compatibility of CTX, we have

(letx = e in e1, letx = e ′ in e1) ∈ CTX
∅ (2)

Then we have

µ(e, (x → e1)K ,A) = µ(letx = e in e1,K ,A) (Lemma 2.15)

≤ µ(letx = e ′ in e1,K ,A) (by IH at K , applied to (2))

= µ(e ′, (x → e1)K ,A) (Lemma 2.15)

Thus completing the induction step. □

Summarizing the results:

Theorem 5.8. For all Γ, CIUΓ
= E

Γ
= CTX

Γ .

Proof. CIUΓ
= E

Γ ⊆ CTXΓ ⊆ CIUΓ by Theorems 4.5, 5.4, and 5.7, respectively. □

6 CONTEXTUAL EQUIVALENCE

Definition 6.1. If Γ ⊢ e exp and Γ ⊢ e ′ exp, we say e and e ′ are contextually equivalent (e =ctx e
′) if

both (e, e ′) ∈ CTXΓ and (e ′, e) ∈ CTXΓ .

In this section we use the machinery from the last few sections to prove several equivalence
schemes. The equivalences fall into three categories:

(1) provable directly using CIU and Theorem 5.8
(2) dependent on łentropy-shuffling”
(3) mathematical properties of R, probability distributions, etc

Some equivalences of the first and second kinds are listed in Figure 6; Section 6.4 gives some
examples of the third kind.

6.1 βv , letv , and δ

The proof for βv demonstrates the general pattern of equivalence proofs using CIU: first we prove
the equation holds for closed expressions, then we generalize to open terms by considering all
closing substitutions.

Lemma 6.2. If ⊢ ((λx .e) v) exp, then ((λx .e) v) =ctx e[v/x].

Proof. By Lemma 2.15, the definition of CIU, and Theorem 5.8. □

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:19

Corollary 6.3 (βv). If Γ ⊢ ((λx .e) v) exp, then ((λx .e) v) =ctx e[v/x].

Proof. By Lemma 6.2, any closed instances of these expressions are contextually equivalent
and thus CIU-equivalent. Hence the open expressions are CIU-equivalent and thus contextually
equivalent. □

The proofs of letv and δ are similar.

6.2 Rearranging Entropy

The remaining equivalences from Figure 6 involve non-trivial changes to the entropy access patterns
of their subexpressions. In this section we characterize a class of transformations on the entropy
space that are measure-preserving. In the next section we use these functions to justify reordering
and rearranging subexpression evaluation.

Definition 6.4 (measure-preserving). A function ϕ : S→ S is measure-preserving when for all
measurable д : S→ R+, ∫

д(ϕ(σ)) dσ =
∫
д(σ) dσ

Note that this definition is implicitly specific to the stock entropy measure µS, which is sufficient
for our needs.

More specifically, the kinds of functions we are interested in are ones that break apart the entropy
into independent pieces using πL and πR and then reassemble the pieces of entropy using ::. Pieces
may be discarded, but no piece may be used more than once.
For example, the following function is measure-preserving:

ϕc (σ1::(σ2::σ3)) = σ2::(σ1::σ3)

Or equivalently, written using explicit projections:

ϕc (σ) = πL(πR (σ))::(πL(σ)::πR (πR (σ)))

We will use this function in Theorem 6.9 to justify let-reordering.
To characterize such functions, we need some auxiliary definitions:

• A path p = [d1, . . . ,dn] is a (possibly empty) list of directions (L or R). It represents a sequence
of projections, and it can be viewed as a function from S to S.

[d1, . . . ,dn](σ) = (πd1 ◦ · · · ◦ πdn)(σ)

• A finite shuffling function (FSF) ϕ is either a path or ϕ1::ϕ2 where ϕ1 and ϕ2 are FSFs. It
represents the disassembly and reassembly of entropy, and it can be viewed as a recursively
defined function from S to S.

ϕ(σ) =

{
p(σ) if ϕ = p

ϕ1(σ)::ϕ2(σ) if ϕ = ϕ1::ϕ2

• A sequence of paths is said to be non-duplicating if no path is the suffix of another path in
the sequence.

• An FSF is said to be non-duplicating if the sequence of paths appearing in its definition is
non-duplicating.

Lemma 6.5. Let p1, . . . ,pn be a non-duplicating sequence of paths and д : Sn → R+. Then
∫
д(p1(σ), . . . ,pn(σ)) dσ =

∫
. . .

∫
д(σ1, . . . ,σn) dσ1 . . . dσn

Proof. By strong induction on the length of the longest path in the sequence, and by the
definition of non-duplicating and Lemma 2.2 (Tonelli). □

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:20 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Theorem 6.6. If ϕ is a non-duplicating FSF then ϕ is measure preserving.

Proof. We need to show that for any д : S→ R+,
∫
д(ϕ(σ)) dσ =

∫
д(σ ′′) dσ ′′

If ϕ has paths p1, . . . ,pn , then we can decompose ϕ using s : Sn → S such that

ϕ(σ) = s(p1(σ), . . . ,pn(σ))

where the pi are non-duplicating. Then by Lemma 6.5 it is enough to show that
∫
. . .

∫
д(s(σ1, . . . ,σn)) dσ1 . . . dσn =

∫
д(σ ′′) dσ ′′

We proceed by induction on ϕ.

• case ϕ = p. This means that n = 1 and s is the identity function, so the equality holds trivially.
• case ϕ = ϕ1::ϕ2. If m is the number of paths in ϕ1, then there must be s1 : Sm → S and
s2 : S

n−m → S such that

s(σ1, . . . ,σm ,σm+1, . . . ,σn) = s1(σ1, . . . ,σm)::s2(σm+1, . . . ,σn)

We can conclude that
∫
. . .

∫
д(s(σ1, . . . ,σn)) dσ1 . . . dσn

=

∫
. . .

∫
д(s1(σ1, . . . ,σm)::s2(σm+1, . . . ,σn)) dσ1 . . . dσn

=

∬
д(σ ::σ ′) dσ dσ ′ (IH twice)

=

∫
д(σ ′′) dσ ′′ (Property 2.1(4))

□

6.3 Equivalences That Depend on Rearranging Entropy

We first prove a general theorem relating value-preserving transformations on the entropy space:

Theorem 6.7. Let e and e ′ be closed expressions, and let ϕ : S → S be a measure-preserving

transformation such that for all σ , K , τ , and A

eval(σ , e,K ,τ , 1,A) ≤ eval(ϕ(σ), e ′,K ,τ , 1,A)

Then (e, e ′) ∈ CTX.

Proof. Without loss of generality, assume e and e ′ are closed (otherwise apply a closing substi-
tution). By Theorem 5.8, it is sufficient to show that for any K and A, µ(e,K ,A) ≤ µ(e ′,K ,A). We
calculate:

µ(e,K ,A) =
∬

eval(σ , e,K ,τ , 1,A) dσ dτ

≤
∬

eval(ϕ(σ), e ′,K ,τ , 1,A) dσ dτ

=

∬
eval(σ , e ′,K ,τ , 1,A) dσ dτ (ϕ is measure-preserving)

= µ(e ′,K ,A)

□

Theorem 6.8. Let e and e ′ be closed expressions, and let ϕ : S → S be a measure-preserving

transformation such that for all v andw ,

σ ⊢ e ⇓ v,w =⇒ ϕ(σ) ⊢ e ′ ⇓ v,w .

Then (e, e ′) ∈ CTX.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:21

Proof. We will use Theorem 6.7. Assume eval(σ , e,K ,τ , 1,A) = r > 0. Hence by Theorem 2.11,
there exist quantities v ′,w ′, σ ′, and τ ′ such that

⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′ | r ⟩

with v ′ ∈ A. By Theorem 2.11 there exist v ′′, σ ′′, andw ′′ such that

σ ⊢ e ⇓ v ′′
,w ′′ and ⟨σ ′′ | v ′′ | K | τ | w ′′⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′ | r ⟩

By the assumption of the theorem, we have ϕ(σ) ⊢ e ′ ⇓ v ′′
,w ′′.

Therefore, by Theorem 2.5, there is a σ ′′′ such that

⟨σ ′ | e | K | t | 1⟩ →∗ ⟨σ ′′′ | v ′′ | K | τ | w ′′⟩

We claim that eval(ϕ(s), e ′,K ,τ , 1,A) = r . Proceed by cases on K . We have ⟨σ ′′ | v ′′ | K | τ | w ′′⟩
→∗ ⟨ϕ(s) | v ′ | halt | τ ′′ | r ⟩. IfK = halt, this reductionmust have length 0. Thereforev ′′

= v ′ ∈ A

andw ′′
= r , so eval(ϕ(s), e ′,K ,τ , 1,A) = r .

Otherwise assume K = (x → e3)K
′. Then both ⟨σ ′′ | v” | K | t | w ′′⟩ and ⟨σ ′′′ | v” | K | t | w ′′⟩

take a step to ⟨πL(τ) | e3[v
′′/x] | K ′ | πR (τ) | w

′′⟩, so eval(ϕ(s), e ′,K ,τ , 1,A) = eval(σ , e,K ,τ , 1,A)
= r , as desired, thus establishing the requirement of Theorem 6.7. □

Now we can finally prove the commutativity theorem promised at the beginning.

Theorem 6.9. Let e1 and e2 be closed expressions, and {x1,x2} ⊢ e0 exp. Then the expressions

letx1 = e1 in letx2 = e2 in e0

and

letx2 = e2 in letx1 = e1 in e0

are contextually equivalent.

Proof using big-step semantics. Let e and e ′ denote the two expressions of the theorem. We
will use Theorem 6.8 with the function ϕc (σ1::(σ2::σ3)) = σ2::(σ1::σ3), which preserves entropy as
shown in the preceding section. We will show that if σ ⊢ e ⇓ v,w , then ϕ(σ) ⊢ e ⇓ v,w .
Inverting σ ⊢ e ⇓ v,w , we know there must be a derivation

πL(σ) ⊢ e1 ⇓ v1,w1

πL(πR (σ)) ⊢ e2 ⇓ v2,w21 πR (πR (σ)) ⊢ e0[v1/x1][v2/x2] ⇓ v,w22

πR (σ) ⊢ letx2 = e2 in e0 ⇓ v,w2

σ ⊢ letx1 = e1 in letx2 = e2 in e0 ⇓ v,w

wherew = w1 ×w2 = w1 × (w21 ×w22).
Since e1 and e2 are closed, they evaluate to closed v1 and v2, and so the substitutions [v1/x1] and

[v2/x2] commute. Using that and the associativity and commutativity of multiplication, we can
rearrange the pieces to get

πL(πR (σ)) ⊢ e2 ⇓ v2,w21

πL(σ) ⊢ e1 ⇓ v1,w1 πR (πR (σ)) ⊢ e0[v2/x2][v1/x1] ⇓ v,w22

πL(σ)::πR (πR (σ)) ⊢ letx1 = e1 in e0 ⇓ v,w1 ×w22

πL(πR (σ))::πL(σ)::πR (πR (σ)) ⊢ letx2 = e2 in letx1 = e1 in e0 ⇓ v,w

The entropy in the last line is precisely ϕ(σ), so the requirement of Theorem 6.8 is established. □

Theorem 6.9 can also be proven directly from the small-step semantics using the interpolation
and genericity theorems (2.8 and 2.9) to recover the structure that the big-step semantics makes
explicit. The proof may be found in the long version [Wand et al. 2018, Appendix A].

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:22 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Corollary 6.10 (Commutativity). Let e1 and e2 be expressions such that x1 is not free in e2 and

x2 is not free in e1. Then

(letx1 = e1 in letx2 = e2 in e0) =ctx (letx2 = e2 in letx1 = e1 in e0)

Proof. Same as Corollary 6.3: since all of the closed instances are equivalent by Theorem 6.9,
the open expressions are equivalent. □

The proofs of let-associativity and letid follow the same structure, except that associativity uses
ϕa((σ1::σ2)::σ3) = σ1::(σ2::σ3) and letid uses ϕi (σ1::σ2) = σ1.

6.4 Quasi-Denotational Reasoning

In this section we give a powerful łquasi-denotational” reasoning tool that shows that if two
expressions denote the same measure, they are contextually equivalent. This allows us to import
mathematical facts about real arithmetic and probability distributions.

To support this kind of reasoning, we need a notion of measure for a (closed) expression indepen-
dent of a program continuation. We define µ̂(e,−) as a measure over arbitrary syntactic valuesÐnot
just real numbers as with µ(e,K ,−). This measure corresponds directly to the µe of Culpepper
and Cobb [2017] and [[e]]S of Borgström et al. [2017]. The definition of µ̂ uses a generalization of
eval from measurable sets of reals (A) to measurable sets of syntactic values (V). This requires a
measurable space for syntactic values; we take the construction of Borgström et al. [2017, Figure 5]
mutatis mutandis.

Definition 6.11.

µ̂(e,V) =
∬

eval(σ , e, halt,τ , 1,V) dσ dτ

eval(σ , e,K ,τ ,w,V) =




w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w ′⟩,

where v ∈ V

0 otherwise

Our goal is to relate an expression’s measure µ̂(e,−) with the measure of that expression with a
program continuation (µ(e,K ,−)). Then if two expressions have the same measures, we can use
CIU to show them contextually equivalent.

First we need a lemma about decomposing evaluations. It is easiest to state if we define the value
and weight projections of evaluation:

ev(σ , e,K ,τ) =

{
v when ⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w⟩

⊥ otherwise

ew(σ , e,K ,τ) =

{
w when ⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w⟩

0 otherwise

Note that

eval(σ , e,K ,τ , 1,V) = IV (ev(σ , e,K ,τ)) × ew(σ , e,K ,τ)

µ̂(e,A) = µ(e, halt,A) for A ∈ ΣR

where IV is the characteristic function of V .

Lemma 6.12.

ev(σ , e,K ,τ) = ev(σ ′
, ev(σ , e, halt,τ ′),K ,τ)

ew(σ , e,K ,τ) = ew(σ ′
, ev(σ , e, halt,τ ′),K ,τ) × ew(σ , e, halt,τ ′)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:23

Proof. By reduction-sequence surgery using Theorem 2.9. Note that the primed variables are
dead: σ ′ because ev returns a value and τ ′ because halt does not use its entropy stack. □

Next we need a lemma from measure theory:

Lemma 6.13. If µ and ν are measures and ν (A) =
∫
IA(f (x)) ×w(x) µ(dx), then

∫
д(y) ν (dy) =

∫
д(f (x)) ×w(x) µ(dx)

Proof. By the pushforward and Radon-Nikodym lemmas from measure theory. □

Now we are ready for the main theorem, which says that µ(e,K ,−) can be expressed as an
integral over µ̂(e,−) where K appears only in the integrand and e appears only in the measure of
integration.

Theorem 6.14.

µ(e,K ,A) =
∭

eval(σ ,v,K ,τ , 1,A) µ̂(e,dv)dσ dτ

Proof. By integral calculations and Lemma 6.12:

µ(e,K ,A) =
∬

eval(σ , e,K ,τ , 1,A) dσ dτ

=

∬
IA(ev(σ , e,K ,τ)) × ew(σ , e,K ,τ) dσ dτ

=

⨌
IA(ev(σ , e,K ,τ)) × ew(σ , e,K ,τ) dσ ′dτ ′dσ dτ (µS(S) = 1)

=

⨌
IA(ev(σ

′
, ev(σ , e, halt,τ ′),K ,τ)) × ew(σ ′

, ev(σ , e, halt,τ ′),K ,τ)
× ew(σ , e, halt,τ ′) dσ ′dτ ′dσ dτ

(Lemma 6.12)

=

∭
IA(ev(σ

′
,v,K ,τ)) × ew(σ ′

,v,K ,τ) µ̂(e,dv)dσ ′dτ (Lemma 6.13)

=

∭
eval(σ ′

,v,K ,τ , 1,A) µ̂(e,dv)dσ ′dτ

□

As a consequence, two real-valued expressions are contextually equivalent if their expression
measures agree:

Theorem 6.15 (µ̂ is qasi-denotational). If e and e ′ are closed expressions such that

• e and e ′ are almost always real-valuedÐthat is, µ̂(e,Values − R) = 0 and likewise for e ′Ðand
• for all A ∈ ΣR, µ̂(e,A) = µ̂(e ′,A)

then e =ctx e
′.

Proof. The two conditions together imply that µ̂(e,−) = µ̂(e ′,−).
We use Theorem 5.8; we must show (e, e ′) ∈ CIU and (e ′, e) ∈ CIU. Choose a continuation K

and a measurable set A ∈ ΣR. Then

µ(e,K ,A) =
∭

eval(σ ,v,K ,τ , 1,A) µ̂(e,dv)dσ dτ (by Lemma 6.14)

=

∭
eval(σ ,v,K ,τ , 1,A) µ̂(e ′,dv)dσ dτ (µ̂(e,−) = µ̂(e ′,−))

= µ(e ′,K ,A) (by Lemma 6.14 again)

The proof of (e ′, e) ∈ CIU is symmetric. □

Theorem 6.15 allows us to import many useful facts from mathematics about real numbers, real
operations, and real-valued probability distributions. For example, here are a few equations useful
in the transformation of the linear regression example from Section 1:

• x + y = y + x

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:24 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

• (y + x) − z = x − (z − y)
• (factor x); (factor y) = (factor x*y); y
• normalpdf(x − y; 0, s) = normalpdf(y;x , s)
• The closed-form posterior and normalizer for a normal observation with normal conjugate
prior [Murphy 2007]:

letm = normal(m0, s0) in

let _ = factor normalpdf(d ;m, s) in

m

=

letm = normal(

(
1
s20
+

1
s2

)−1 (
m0

s20
+

d
s2

)
,

(
1
s20
+

1
s2

)−1/2
) in

let _ = factor normalpdf(d ;m0, (s
2
0 + s

2)1/2) in

m

Note that we must keep the normalizer (the marginal likelihood of d); it is needed to score
the hyper-parametersm0 and s0.

Section 7.2 contains an additional application of Theorem 6.15.

6.5 An Application

Recall the example program from the introduction and the proposed transformation:

A = normal(0, 10)

B = normal(0, 10)

f(x) = A*x + B

factor normalpdf(f(2) - 2.4; 0, 1)

factor normalpdf(f(3) - 2.7; 0, 1)

factor normalpdf(f(4) - 3.0; 0, 1)

→

A = normal(0, 10)

factor Z(A)

B = normal(M(A), S(A))

The core of the transformation is the last equivalence from Section 6.4, which transforms an
observation with a conjugate prior into the posterior and normalizer (which scores the prior’s
hyperparameters). But applying that transformation requires auxiliary steps to focus the program
into the requisite shape:

• Inline f to expose the dependence of the observations on B.
• Rewrite the observations to the form normalpdf(_; B, _) using facts about arithmetic and
normalpdf.

• Reassociate the (implicit) lets to isolate the definition of B and the first observation from
the rest of the program’s main let chain.

That sets the stage for the application of the conjugacy transformation for one observation. Addi-
tional shuffling is required to process subsequent observations. Moreover, each of the mathematical
rewrite rules needs help from the rules of Figure 6 to manage the intermediate let bindings required
by our language’s syntax.

An alternative transformation strategy is to combine the observations beforehand using equations
about products of normal densities. The same preliminary transformations are necessary, but the
observation-processing loop is eliminated.

6.6 Other Equivalences

The list of equivalences presented in this section is not exhaustive. On the λ-calculus side, we focused
on a few broadly applicable rules that involve only syntactic restrictions on the sub-expressionsÐ
specifically, constraints on free variables. There are other equivalences that require additional

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:25

semantic constraints. For example, a let-binding is useless and can be dropped if the right-hand
side has an expression measure of weight 1; that is, it nearly always terminates without an error
and it does not (effectively) use factor. Similarly, hoisting an argument-invariant expression out
of a function body requires the same conditions, and the expression must also be deterministic.
On the domain-specific side, Theorem 6.15 works well for programs that contain first-order

islands of sampling, scoring, and mathematical operations. But programs with mathematics tangled
up with higher-order code, it would be necessary to find either a method of detangling them or a
generalization to higher-order expression measures.

7 FORMALLY RELATED WORK

Our language model differs from other models of probabilistic languages, such as that of Borgström
et al. [2016], in the following ways. Our language

• uses splitting rather than sequenced entropy,
• requires let-binding of nontrivial intermediate expressions, and
• directly models only the standard uniform distribution.

These differences, while they make our proofs easier, do not amount to fundamental differences
in the meaning of probabilistic programs. In this section, we show how our semantics corresponds
to other formulations.

7.1 Splitting versus Sequenced Entropy

Let the sequenced entropy spaceT be the space of finite sequences (łtraces”) of real numbers [Borgström
et al. 2017, Section 3.3]:

T =

⋃

n≥0

R
n

Its stock measure µT is the sum of the standard Lebesgue measures on Rn (but restricted to the
Borel algebras on Rn rather than their completions with negligible sets). Note that µT is infinite.
We write ϵ for the empty sequence and r ::t for the sequence consisting of r followed by the

elements of t . Integration with respect to µT has the following property:
∫
f (t) µT(dt) = f (ϵ) +

∬
f (r ::t) µT(dt) λ(dr)

We define Ü→, ev̈al(t , e,K ,w,A), and Üµ(e,K ,A)2 as the sequenced-entropy analogues of →, eval,
and µ. Here are some representative rules of Ü→:

⟨t | letx = e1 in e2 | K | w⟩ Ü→ ⟨t | e1 | (x → e2)K | w⟩

⟨t | v | (x → e2)K | w⟩ Ü→ ⟨t | e2[v/x] | K | w⟩

⟨r ::t | sample | K | w⟩ Ü→ ⟨t | cr | K | w⟩ (when 0 ≤ r ≤ 1)

⟨t | factor cr | K | w⟩ Ü→ ⟨t | cr | K | w × r ⟩ (when r > 0)

and here are the definitions of ev̈al and Üµ:

ev̈al(t , e,K ,w,A) =

{
w ′ if ⟨t | e | K | w⟩ Ü→∗⟨ϵ | r | halt | w ′⟩, where r ∈ A

0 otherwise

Üµ(e,K ,A) =
∫
ev̈al(t , e,K , 1,A) µT(dt)

Note that an evaluation counts only if it completely exhausts its entropy sequence t . The approxi-

mants ev̈al(n) and Üµ(n) are defined as before; in particular, they are indexed by number of steps, not
by random numbers consumed.

2The dots are intended as a mnemonic for sequencing.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:26 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

In general, the entropy access pattern is so different between split and sequenced entropy models
that there is no correspondence between individual evaluations, and yet the resulting measures are
equivalent.

Lemma 7.1. If ⟨t | e |K |w⟩ Ü→⟨t ′ | e ′ |K ′ |w ′⟩, then ev̈al(p+1)(t , e,K ,w,A) = ev̈al(p)(t ′, e ′,K ′
,w ′
,A).

Proof. By the definition of ev̈al(p+1). □

Lemma 7.2. The equations of Lemma 2.15 also hold for Üµ(n) and Üµ.

Proof. By definition of Üµ and Lemma 7.1. In fact, in contrast to Lemma 2.15, most of the cases
are utterly straightforward, because no entropy shuffling is necessary. The sample case is different,
because it relies on the structure of the entropy space:

Üµ(e,K ,A) =
∫
ev̈al(t , sample,K , 1,A) d(t)

= ev̈al(ϵ, sample,K , 1,A) +
∬

ev̈al(r ::t , sample,K , 1,A) µT(dt) λ(dr)

= 0 +
∬

I[0,1](r) × ev̈al(t , cr ,K , 1,A) µT(dt) λ(dr)

=

∫ 1

0
Üµ(cr ,K ,A) λ(dr)

□

Theorem 7.3 (Üµ = µ). For all e , K , and A ∈ ΣR, Üµ(e,K ,A) = µ(e,K ,A).

Proof. We first show Üµ(n) = µ(n) by induction on n. The base case is Üµ(0)(e,K ,A) = µ(0)(e,K ,A).
There are two subcases: if e = r and K = halt, then both results are IA(r). Otherwise, both
measures are 0. Lemma 7.2 handles the inductive case. Finally, since the approximants are pointwise
equivalent, their limits are equivalent. □

7.2 Distributions

The language of Borgström et al. [2016] supports multiple real-valued distributions with real
parameters; sampling from a distribution, in addition to consuming a random number, multiplies
the current execution weight by the density of the distribution at that point. In this section we
show that sample is equally expressive, given the inverse-CDF operations.

For each real-valued distribution of interest with n real-valued parameters, we add the following
to the language: a sampling form D(v1, . . . ,vn) and operations Dpdf, Dcdf, and Dinvcdf represent-
ing the distribution’s density function, cumulative distribution function, and inverse cumulative
distribution function, respectively. The operations take n + 1 arguments; by convention we write a
semicolon before the parameters. For example, gammapdf(x ;k, s) represents the density at x of the
gamma distribution with shape k and scale s .

We define the semantics of D using the sequenced-entropy framework by extending Ü→ with the
following rule schema:

⟨r ::t | D(r1, . . . , rn) | K | w⟩ Ü→ ⟨t | r | K | w ×w ′⟩ wherew ′
= Dpdf(r ; r1, . . . , rn) > 0

Theorem 7.4. D(v1, . . . ,vn) and Dinvcdf(sample;v1, . . . ,vn) are CIU-equivalent (and thus

contextually equivalent).

Proof. ByTheorem 6.15. Both expressions are real-valued.Wemust show that their realmeasures
are equal. We abbreviate the parameters as ®v . The result follows from the relationship between the
density function and the cumulative density function.

µ̂(Dinvcdf(sample; ®v),A) =
∫ 1

0
IA(Dinvcdf(x ; ®v)) dx

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:27

We change the variable of integration with x = Dcdf(t ; ®v) and dx
dt
= Dpdf(t ; ®v):

=

∫ ∞

−∞
IA(Dinvcdf(Dcdf(t ; ®v); ®v)) × Dpdf(t ; ®v) dt

=

∫ ∞

−∞
IA(t) × Dpdf(t ; ®v) dt

= µ̂(D(®v),A)

□

7.3 From let-Style to Direct-Style

Let us call the language of Section 2.1 L (for łlet”) and the direct-style analogue D (for łdirect”).
Once again following Borgström et al. [2016], we give the semantics of D using a CS-style abstract
machine, in contrast to the CSK-style machines we have used until now [Felleisen et al. 2009].
Here are the definitions of expressions and evaluation contexts for D:

e ::= v | letx = e in e | (e e) | op (e, . . . , e) | if e then e else e

E ::= [] | letx = E in e | (E e) | (v E) | op(v, . . . ,E, e, . . .) | if E then e else e

Here are some representative rules for its abstract machine:

⟨t | E[((λx .e) v)] | w⟩ →D ⟨t | E[e[v/x]] | w⟩

⟨r ::t | E[sample] | w⟩ →D ⟨t | E[cr] | w⟩

And here are the corresponding definitions of evaluation and measure:

evalD(t , e,w,A) =

{
w ′ if ⟨t | e | w⟩ →∗

D
⟨ϵ | r | w ′⟩, where r ∈ A

0 otherwise

µD(e,A) =
∫
evalD(t , e, 1,A) µT(dt)

To show that our L corresponds withD, we define a translation tr[[−]] : D → L. More precisely,
tr[[−]] translates D-expressions to L-expressions, such as

tr[[r]] = r

tr[[λx .e]] = λx .tr[[e]]

tr[[(e1 e2)]] = letx1 = tr[[e1]] in letx2 = tr[[e2]] in (x1 x2)

tr[[letx = e1 in e2]] = letx = tr[[e1]] in tr[[e2]]

and it translates D-evaluation contexts to L-continuations, such as

tr[[[]]] = halt

tr[[E[([] e2)]]] = (x1 → letx2 = e2 in (x1 x2))tr[[E]]

tr[[E[(v1 [])]]] = (x2 → (v1 x2))tr[[E]]

tr[[E[letx = [] in e]]] = (x → e)tr[[E]]

Now we demonstrate the correspondence of evaluation and then lift it to measures.

Lemma 7.5 (Simulation). evalD(t ,E[e],w,A) = ev̈al(t , tr[[e]], tr[[E]],w,A)

Proof. From the CS-style machine above we can derive a corresponding CSK machine (call it
→Dcsk); the technique is standard [Felleisen et al. 2009]. Then it is straightforward to show that

⟨t | e | K | w⟩ →Dcsk ⟨t ′ | e ′ | K ′ | w⟩ =⇒ ⟨t | tr[[e]] | tr[[K]] | w⟩ Ü→∗⟨t ′ | tr[[e ′]] | tr[[K ′]] | w ′⟩

and thus the evaluators agree. □

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

87:28 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Theorem 7.6. µD(E[e],A) = µ(tr[[e]], tr[[E]],A)

Proof. By definition of µD and Lemmas 7.3 and 7.5. □

The equational theory for D is the pullback of the L equational theory over tr[[−]]. Compare
with Sabry and Felleisen [1993], which explores the pullback of λβη and related calculi over the
call-by-value CPS transformation. For our language D, associativity and commutativity combine
to yield a generalization of their βflat and β ′

Ω
equations to łsingle-evaluation” contexts S :

S ::= [] | (S e) | (e S) | letx = S in e | letx = e in S

| op (e, . . . , S, e, . . .) | if S then e else e

letx = e in S[x] =ctx S[e] when x < FV (S) ∪ FV (e) (letS)

8 INFORMALLY RELATED WORK

Our language and semantics are based on that of Culpepper and Cobb [2017], but unlike that
language, which is simply-typed, ours is untyped and thus has recursion and nonterminating
programs. Consequently, our logical relation must use step-indexing rather than type-indexing.
Using an untyped language instead of a typed one not only introduces recursion; it increases the
universe of expressions to which the theory applies, but it also makes the equivalence stricter, since
the untyped language admits both more expressions and more contexts.
The construction of our logical relation follows the tutorial of Pitts [2010] on the construction

of biorthogonal, step-indexed [Ahmed 2006] logical relations. Instead of termination, we use the
program measure as the observable behavior, following Culpepper and Cobb [2017]. But unlike
that work, where the meaning of an expression is a measure over arbitrary syntactic values, we
define the meaning of an expression and continuation together (representing a whole program)
as a measure over the reals. This allows us to avoid the complication of defining a relation on
measurable sets of syntactic values [Culpepper and Cobb 2017, the A relation].
There has been previous work on contextual equivalence for probabilistic languages with only

discrete random variables. In particular, Bizjak and Birkedal [2015] define a step-indexed, biorthog-
onal logical relation whose structure is similar to ours, except that they sum where we integrate,
and they use the probability of termination as the basic observation whereas we compare measures.
Others have applied bisimulation techniques [Crubillé and Lago 2014; Sangiorgi and Vignudelli
2016] to languages with discrete choice; Ehrhard et al. [2014] have constructed fully abstract models
for PCF with discrete probabilistic choice using probabilistic coherence spaces.

Staton et al. [2016] gives a denotational semantics for a higher-order, typed language with con-
tinuous random variables, scoring, and normalization but without recursion. Using a variant of that
denotational semantics, Staton [2017] proves the soundness of the let-reordering transformation
for a first-order language.

ACKNOWLEDGMENTS

This material is based upon work sponsored by the Air Force Research Laboratory (AFRL) and the
Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-14-C-0002. The
views expressed are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 695412).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables. . . 87:29

REFERENCES

Amal J. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proc. 15th European

Symposium on Programming (ESOP ’06). 69ś83. https://doi.org/10.1007/11693024_6

Ales Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Proc. 18th International Confer-

ence on Foundations of Software Science and Computation Structures (FoSSaCS ’15). 279ś294. https://doi.org/10.1007/

978-3-662-46678-0_18

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2017. A Lambda-calculus Foundation for

Universal Probabilistic Programming (long version). https://arxiv.org/abs/1512.08990

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for

universal probabilistic programming. In Proc. 21st ACM SIGPLAN International Conference on Functional Programming

(ICFP ’16). 33ś46. https://doi.org/10.1145/2951913.2951942

Raphaëlle Crubillé and Ugo Dal Lago. 2014. On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi. In Proc.

23rd European Symposium on Programming (ESOP ’14). 209ś228. https://doi.org/10.1007/978-3-642-54833-8_12

Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random

Variables and Scoring. In Proc. 26th European Symposium on Programming (ESOP ’17). 368ś392. https://doi.org/10.1007/

978-3-662-54434-1_14

Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for proba-

bilistic PCF. In Proc. 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). 309ś320.

https://doi.org/10.1145/2535838.2535865

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex (1st ed.). The MIT

Press.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a

language for generative models. In Proc. 24th Conference in Uncertainty in Artificial Intelligence (UAI ’08). 220ś229.

Daniel Huang and Greg Morrisett. 2016. An Application of Computable Distributions to the Semantics of Probabilistic

Programming Languages. In Proc. 25th European Symposium on Programming (ESOP ’16). 337ś363. https://doi.org/10.

1007/978-3-662-49498-1_14

Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded Probabilistic Programming. In Proc. IFIP TC 2 Working Conference on

Domain-Specific Languages (DSL ’09). 360ś384. https://doi.org/10.1007/978-3-642-03034-5_17

Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform with

programmable inference. http://arxiv.org/abs/1404.0099

Ian Mason and Carolyn Talcott. 1991. Equivalence in functional languages with effects. J. Funct. Program. 1, 3 (1991),

287ś327. https://doi.org/10.1017/S0956796800000125

Kevin P. Murphy. 2007. Conjugate Bayesian analysis of the Gaussian distribution. https://www.cs.ubc.ca/~murphyk/

Papers/bayesGauss.pdf

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference by

Program Transformation in Hakaru (System Description). In Proc. 13th International Symposium on Functional and Logic

Programming (FLOPS ’16). 62ś79. https://doi.org/10.1007/978-3-319-29604-3_5

Brooks Paige and Frank Wood. 2014. A Compilation Target for Probabilistic Programming Languages. In Proc. 31th

International Conference on Machine Learning (ICML ’14). 1935ś1943.

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2008. A Probabilistic Language Based on Sampling Functions. ACM

Trans. Program. Lang. Syst. 31, 1, Article 4 (Dec. 2008), 4:1ś4:46 pages. https://doi.org/10.1145/1452044.1452048

Andrew M. Pitts. 2010. Step-Indexed Biorthogonality: a Tutorial Example. In Modelling, Controlling and Reasoning About

State (Dagstuhl Seminar Proceedings), Amal Ahmed, Nick Benton, Lars Birkedal, and Martin Hofmann (Eds.). http:

//drops.dagstuhl.de/opus/volltexte/2010/2806/

Amr Sabry and Matthias Felleisen. 1993. Reasoning about programs in continuation-passing style. LISP and Symbolic

Computation 6, 3 (01 Nov 1993), 289ś360.

Davide Sangiorgi and Valeria Vignudelli. 2016. Environmental bisimulations for probabilistic higher-order languages. In

Proc. 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). 595ś607. https:

//doi.org/10.1145/2837614.2837651

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In Proc. 26th European Symposium on Programming

(ESOP ’17). 855ś879. https://doi.org/10.1007/978-3-662-54434-1_32

Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic programming:

higher-order functions, continuous distributions, and soft constraints. In Proc. 31st IEEE Symposium on Logic in Computer

Science (LICS ’16). 525ś534. https://doi.org/10.1145/2933575.2935313

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual Equivalence for a

Probabilistic Language with Continuous Random Variables and Recursion. https://arxiv.org/abs/1807.02809

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://arxiv.org/abs/1512.08990
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1007/978-3-662-49498-1_14
https://doi.org/10.1007/978-3-662-49498-1_14
https://doi.org/10.1007/978-3-642-03034-5_17
http://arxiv.org/abs/1404.0099
https://doi.org/10.1017/S0956796800000125
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/1452044.1452048
http://drops.dagstuhl.de/opus/volltexte/2010/2806/
http://drops.dagstuhl.de/opus/volltexte/2010/2806/
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1145/2933575.2935313
https://arxiv.org/abs/1807.02809

87:30 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic Programming

Inference. In Proc. 17th International Conference on Artificial Intelligence and Statistics (AISTATS ’14). 1024ś1032.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 87. Publication date: September 2018.

	Abstract
	1 Introduction
	2 Probabilistic Language Model
	2.1 Syntax
	2.2 Modeling Entropy
	2.3 Operational Semantics
	2.4 From Evaluations to Measures

	3 The Logical Relation
	4 CIU Ordering
	5 Contextual Ordering
	6 Contextual Equivalence
	6.1 v, let v, and
	6.2 Rearranging Entropy
	6.3 Equivalences That Depend on Rearranging Entropy
	6.4 Quasi-Denotational Reasoning
	6.5 An Application
	6.6 Other Equivalences

	7 Formally Related Work
	7.1 Splitting versus Sequenced Entropy
	7.2 Distributions
	7.3 From let-Style to Direct-Style

	8 Informally Related Work
	Acknowledgments
	References

