
Finite-depth higher-order abstract syntax trees
for reasoning about probabilistic programs ∗

Extended Abstract

Theophilos Giannakopoulos
BAE Systems

theo.giannakopoulos@baesystems.com

Mitchell Wand Andrew Cobb
Northeastern University

wand@ccs.neu.edu acobb@ccs.neu.edu

1. Introduction
We define a core calculus for the purpose of investigating reasoning
principles of probabilistic programming languages. By using a vari-
ation of a technique called higher-order abstract syntax (HOAS),
which is common in the implementation of domain-specific lan-
guages, the calculus captures the semantics of a stochastic language
with observation while being agnostic to the details of its deter-
ministic portions. By remaining agnostic to the non-stochastic por-
tions of the language, this style of semantics enables the discovery
of general reasoning principles for the principled manipulation of
probabilistic program fragments by programmers, compilers, and
analysis tools. This generality allows us to reason about probabilis-
tic program fragments without the need to resort to the underlying
measure theory in every instance, by instead enabling reasoning in
terms of the core calculus in a way that we believe to be applicable
to various surface-level languages.

2. The need for formal reasoning
The two program fragments in Figure 1 are written in pseudocode
for a probabilistic programming language. They describe programs
that seem equivalent: when any color coin is substituted for x, the
programs denote measures that are equivalent up to a normalization
factor (i.e. same-color coins have the same bias). For example,

Prob[[p1 Red]](Heads) = Prob[[p2 Red]](Heads) = 1/5.

However, when combined with the given prior on coin colors, a
careful evaluation of their denotations shows that the two fragments
are not equivalent.

Prob[[do {x <- prior; p1 x}]](Heads) =
33

85

Prob[[do {x <- prior; p2 x}]](Heads) =
9

25

Running an enumeration on the examples in a probabilistic pro-
gramming language, such as Gamble [2] or webppl [4], yields the
same results.

This example demonstrates how seemingly sound reasoning
about probabilistic programs can fail if it is not carefully done. In a
situation where it is not possible to enumerate the distributions de-
noted by both programs, e.g. where the purpose of using an equiv-

∗ This material is based upon work sponsored by the Air Force Research
Laboratory (AFRL) and the Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8750-14-C-0002. The views expressed are
those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
Approved for public release; unlimited distribution. Copyright c© 2015,
BAE Systems, Mitchell Wand, and Andrew Cobb. All rights reserved.

p1 x = do
d <- discrete [(1/25, (Red , Heads))

,(4/25, (Red , Tails))
,(8/25, (Blue , Heads))
,(12/25, (Blue , Tails))]

observe (fst d == x)
return (snd d)

p2 x = if x == Red
then discrete [(1/5, Heads), (4/5, Tails)]
else discrete [(2/5, Heads), (3/5, Tails)]

prior = discrete [(1/5 , Red), (4/5, Blue)]

Figure 1. Example of inequivalent program fragments. Given a
choice of a red or blue coin, the fragments p1 and p2 flip the coin
and return the result. The coins have the same bias between the two
fragments, but combining the fragments with the same prior does
not result in equivalent programs.

EMBED
µ is a sub-probability measure on (A,ΣA)

` embedµ : MeasA

BIND
` t : MeasA f : A→ MeasB

` t�= f : MeasB

Figure 2. Constructors and typing rules

alent form is to make inference tractable, such informal reasoning
will lead to incorrect results.

3. Finite-depth HOAS trees
The above example can be captured using finite-depth HOAS trees.
Finite-depth HOAS trees are built from two constructors: embed
and �= (pronounced bind). The typing rules for the constructors
can be found in Figure 2. The constructor embed allows for the
embedding of arbitrary sub-probability measures into the calculus.
The constructor�= combines a HOAS tree with a (deterministic)
mathematical function that produces HOAS trees. Using general
mathematics as the host language for the HOAS technique is what
makes our calculus language-agnostic.

The denotations assigned to these constructs are the morphisms
and monadic bind from Panangaden’s category of Markov kernels
SRel [6], which extends Giry’s category of probabilities [3] to sub-
probability measures. The denotations are given in Figure 3.

https://github.com/rmculpepper/gamble
https://webppl.org

[[embedµ]](σ) = µ(σ)

[[t�= f]](σ) =

∫
[[fx]](σ)[[t]](dx)

Figure 3. Finite-depth HOAS tree denotations. HOAS trees only
have well-defined denotations when for every t �= f , x 7→
[[fx]](σ) is a measurable function for all σ.

Note that the monadic unit (or return) operation is captured
by embedding a Dirac measure, which we denote return x =
embed δx. The earlier pseudocode is in the do-notation syntactic
sugar for monadic expressions. We also introduce observe as
sugar for

observe b =

{
return () b = True

embed (σ 7→ 0) otherwise
.

In this way, observation failure is represented as missing mass in
the sub-probability measure.

Using this calculus, we prove a theorem that describes when
probabilistic program fragments (which implicitly denote measure
kernels) can be reasoned about as normalized distributions, rather
than as more general measures. To obtain this theorem, we intro-
duce two forms of equivalence on measure kernels. For two pro-
gram fragments f, g : A → MeasB, we say that f is point-wise
dist-equivalent to g when for all a, there is some normalizing con-
stant c ∈ R such that for all σ, [[fa]](σ) = c · [[ga]](σ). This is
the kind of equivalence we used in the attempt to reason about the
program fragments in the original example.

When the same c can be used for all a, we have the second
form of equivalence, and say that the two program fragments are
uniformly dist-equivalent.

THEOREM 1. Let t, s : MeasA and let f, g : A → MeasB.
Assume there is some c such that for all σ, [[t]](σ) = c · [[s]](σ)
and that f and g are uniformly dist-equivalent with normalizing
constant d.

Then, for all σ, [[t�= f]](σ) = c · d · [[s�= g]](σ).

This theorem states the requirement that two program fragments
be uniformly dist-equivalent, rather than simply point-wise dist-
equivalent, for them to exhibit equivalence in all contexts. This
is the reason why the programs in the original example were not
equivalent in the given context.

Simple sufficient criteria for the application of this theorem are
that two program kernels be point-wise dist-equivalent and have
no observations that depend on the input to the kernels. This is
powerful enough to allow a programmer to use observations to
define “helper distributions” which can then be re-written (by the
programmer or by a sufficiently smart compiler) into more efficient
forms, e.g. via equivalences due to conjugacy. For example, a
programmer could write

b <- beta 1 1
c <- bernoulli b
observe (c == 1)

at an arbitrary point in a program, and by the above theorem it could
be replaced with the equivalent and presumably more efficient
beta 2 1.

4. Related work
As mentioned above, we use Panangaden’s SRel category to give
the semantics for HOAS trees [6]. Unlike Panangaden we have no

recursion in our language, and so we are using the missing proba-
bility mass of the sub-probability measures to represent observation
failure instead of non-termination.

In that our calculus does not support recursion and that we
use missing probability mass to represent observation failure,
we have some similarities to the measure transformers given by
Borgström [1]. However, unlike Borgström we prefer to work with
measures directly and so do not make use of probability density
functions in our semantics.

5. Ongoing work and conclusions
Denotational semantics is useful for reasoning because it lets us
focus on the meaning of programs independently of execution
strategies for the programs. Because our calculus is agnostic to the
deterministic portions of a language, it is even more independent of
details unrelated to the reasoning we want to perform.

Using this technique we were able to devise a general theorem
about the equivalence of probabilistic program fragments up to nor-
malization. This theorem, which justifies the re-writing of program
fragments at arbitrary points in a program, demonstrates that our
approach can be used for discovering novel reasoning principles
about probabilistic programs.

We are currently working on a second core calculus that cap-
tures recursively defined probabilistic programs with strict data
structures. The semantics of this calculus are given in a complete
partial order (cpo) of measures that is similar to the ones given by
Saheb-Djahromi [7] and by Jones & Plotkin [5]. So far we have pre-
liminary results indicating that the interaction between joins in cpos
and integration of measures is well behaved. We have also found
that when working in a calculus that supports non-termination, it
appears to be convenient to distinguish between observation fail-
ure and non-termination by abandoning the use of sub-probability
measures and instead using distinct points for the different kinds of
failure.

We hope to use the second core calculus to show results similar
to those for finite-depth HOAS trees. We also plan to extend the
semantics to handle non-strict data structures, so that we can use
them to reason about constructs like mem, which we have observed
to be frequently used in the design of probabilistic programs.

Acknowledgments
Thanks to Norman Ramsey, Aleksey Kliger, Ryan Culpepper, Sean
Stromsten, and Valentino Crespi.

References
[1] J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and

J. Van Gael. Measure transformer semantics for Bayesian machine
learning. In Programming Languages and Systems, pages 77–96.
Springer, 2011.

[2] R. Culpepper. Gamble. https://github.com/rmculpepper/
gamble, 2015.

[3] M. Giry. A categorical approach to probability theory. In Categorical
aspects of topology and analysis, pages 68–85. Springer, 1982.

[4] N. D. Goodman and A. Stuhlmüller. The Design and Implementation
of Probabilistic Programming Languages. http://dippl.org, 2014.
Accessed: 2015-10-12.

[5] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.
In Logic in Computer Science, 1989. LICS’89, Proceedings., Fourth
Annual Symposium on, pages 186–195. IEEE, 1989.

[6] P. Panangaden. The category of Markov kernels. Electronic Notes in
Theoretical Computer Science, 22:171–187, 1999.

[7] N. Saheb-Djahromi. CPO’s of measures for nondeterminism. Theoret-
ical Computer Science, 12(1):19–37, 1980.

https://github.com/rmculpepper/gamble
https://github.com/rmculpepper/gamble
http://dippl.org

	Introduction
	The need for formal reasoning
	Finite-depth HOAS trees
	Related work
	Ongoing work and conclusions

