
Contextual Equivalence for a Probabilistic
Language with Continuous Random Variables

and Recursion ?

Mitchell Wand1, Theophilos Giannakopoulos2, Andrew Cobb1, and Ryan
Culpepper1

1 Northeastern University
2 BAE Systems

Abstract. We present a complete reasoning principle for contextual
equivalence in an untyped probabilistic programming language. The lan-
guage includes continuous random variables, conditionals, and scoring.
The language also includes recursion, since in an untyped language the
standard call-by-value fixpoint combinator is expressible. The language
is similar to that of Borgström et al. [5].
To demonstrate the usability of our characterization, we use it to prove
that reordering the draws in a probabilistic program preserves contextual
equivalence. This allows us to show, for example, that

(letx = e1 in let y = e2 in e0) =ctx (let y = e2 in letx = e1 in e0)

(provided x is not among the free variables of e2 and y is not among the
free variables of e1) despite the fact that e1 and e2 may have the effect
of drawing from the source of entropy.

1 Introduction

Our goal is to give a useful characterization of contextual equivalence for a
non-trivial probabilistic programming language. By “probabilistic programming
language”, we mean a language intended to represent probability distributions,
or measures in general. By non-trivial, we mean a language that supports

– continuous random variables, conditionals, and scoring (soft constraints),
and

– higher-order functions and recursion

Such languages include Church [9], its descendants such as Venture [11] and
Anglican [20], and others [10, 12, 13].

? This material is based upon work sponsored by the Air Force Research Laboratory
(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Con-
tract No. FA8750-14-C-0002. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

By contextual equivalence, we mean the usual notion: two expressions are
to be contextually equivalent if there is no context that gives them different
observable behavior. Contextual equivalence is important because it is the gold
standard of equivalence: if a compiler transforms a term into a contextually
equivalent term, then it is always safe to do the transformation.

By useful, we mean that the characterization can be used to prove the cor-
rectness of some non-trivial equivalence. Our motivating example is

(letx = e1 in let y = e2 in e0) =ctx (let y = e2 in letx = e1 in e0)

(provided x is not among the free variables of e2 and y is not among the free
variables of e1). This equivalence, while valid for a pure language, is certainly not
valid for all effects (imagine, for example, that there is an assignment statement
in e1 or e2).

While there has been much work on the operational (and sometimes deno-
tational) semantics of individual terms in probabilistic programming languages,
there has been less work on contextual equivalence. Bizjak and Birkedal [2] char-
acterize contextual equivalence for a language with a powerful type system, but
with only discrete choice. Culpepper and Cobb [7] characterize contextual equiv-
alence for a language with continuous random variables and scoring, but with
only simple types (no recursion). Staton [17] shows the equivalence above using
denotational semantics, but only for a non-recursive first-order language.

We begin in section 2 by defining an untyped language, similar to that of
Borgström et al. [5]. Because it is an untyped language, it can express the usual
call-by-value fixpoint operator. Section 3 describes our axiomatic model of en-
tropy; this is different from the model in Borgström et al. [5].

In section 4, we give this language a conventional small-step semantics that
describes the behavior of a program with a given value for the entropy, and
prove a variety of easy properties. We then prove an Interpolation Theorem
(Theorem 7) and a Genericity Theorem (Theorem 8). The Interpolation Theorem
says that any terminating computation starting with an expression e begins by
evaluating e to a value v, and then sending that value to the continuation K,
and the Genericity Theorem says that the value v is independent of K. The
proof given here is novel (at least to us), and may be useful in other contexts.
These theorems essentially allow us to use big-step reasoning in our small-step
semantics (see also Wand and Clinger [19, Theorem 17]).

Section 5 describes the observable behavior of programs in terms of measures
obtained by integrating the behavior of a program over all choices of the entropy.

In section 6, we define a step-indexed logical relation on values, expressions,
and continuations, and we prove the Fundamental Property for our relation. In
sections 7 and 8, we show that the logical relation and its close cousin the CIU
relation are sound and complete for contextual equivalence. This reaches our
first goal, that of a useful characterization of contextual equivalence, in the form
of the CIU theorem (Theorem 45). The presentation here closely follows that of
Pitts [14], modified to take account of our notion of observable behavior.

We then apply these results to the claimed commutativity result. In sec-
tion 9, we characterize a useful set of transformations on the entropy space that

2

are guaranteed to be measure-preserving, and in section 10 we use these trans-
formations, along with the Interpolation and Genericity Theorems, to prove the
commutativity result.

We conclude with related work and open problems.

2 Syntax

The syntax of our language is given in figure 1.

v ::= x | λx.e | cr Syntactic Values
e ::= v | (v v) | letx = e in e Expressions

| opn(v1, . . . , vn) | if v then e else e
| sample | factor v

op1 ::= log | exp | real? | . . . Unary operations
op2 ::= + | − | × | ÷ | < | ≤ | . . . Binary operations
K ::= halt | (x→ e)K Continuations

Fig. 1. Syntax of values, expressions, and continuations

We have a constant cr for each real number r. sample draws from a uniform
distribution on [0, 1], and factor v weights (or “scores”) the current execution
by the value v . For simplicity, we require sequencing to be made explicit using
let.

The language is untyped, but we express the scoping relations by rules like
typing rules. We write Γ ` e exp for the assertion that e is a well-formed expres-
sion whose free variables are contained in the set Γ , and similarly for values and
continuations. The scoping rules are given in figure 2.

3 Modeling Entropy

The semantics uses an entropy component as the source of randomness. Following
Culpepper and Cobb [7] we assume an entropy space S along with its stock
measure µS. We use σ and τ to range over values in S. When we integrate over
σ or τ , we implicitly use the stock measure µS.

We further assume that S has the following properties:

Property 1 (Properties of Entropy).

1. µS(S) = 1
2. It comes with a uniform sampler, that is, a function πU : S → [0, 1] such

that for all measurable f : [0, 1]→ R+,∫
f(πU (σ)) dσ =

∫
[0,1]

f(x)λ(dx)

where λ is the Lebesgue measure.

3

x ∈ Γ
Γ `x val

Γ, x` e exp

Γ `λx.e val
Γ ` cr val

Γ ` v val

Γ ` v exp

Γ ` v1 val Γ ` v2 val

Γ ` (v1 v2) exp

Γ ` e1 exp Γ, x` e2 exp

Γ ` letx = e1 in e2 exp

Γ ` vi val (∀i ∈ {1, . . . , n})
Γ ` opn(v1, . . . , vn) exp

Γ ` v val Γ ` e1 exp Γ ` e2 exp

Γ ` if v then e1 else e2 exp

Γ ` sample exp
Γ ` v val

Γ ` factor v exp

` halt cont
{x}` e exp `K cont

` (x→ e)K cont

Fig. 2. Scoping rules for values, expressions, and continuations

3. It comes with a surjective pairing function ‘::‘ : S× S→ S, with projections
πL and πR, all measurable.

4. The projections are measure-preserving: for all measurable g : S× S→ R+,∫
g(πL(σ), πR(σ)) dσ =

∫∫
g(σ1, σ2) dσ1 dσ2

Since S ∼= S× S and thus S ∼= Sn (n ≥ 1), we can also use entropy to encode
non-empty sequences of entropy values.

We also use Tonelli’s Theorem:

Lemma 2 (Tonelli). Let f : S× S→ R+ be measurable. Then∫ (∫
f(σ1, σ2) dσ1

)
dσ2 =

∫ (∫
f(σ1, σ2) dσ2

)
dσ1

4 Operational Semantics

We give this language a small-step operational semantics. The semantics rewrites
configurations 〈σ | e | K | τ | w〉 consisting of:

– an entropy σ (representing the “current” value of the entropy),
– a closed expression e,
– a closed continuation K,
– an entropy τ (encoding a stack of entropies, one for each frame of K), and
– a positive real number w (representing the weight of the current run)

4

〈σ | letx = e1 in e2 | K | τ | w〉 → 〈πL(σ) | e1 | (x→ e2)K | πR(σ)::τ | w〉
〈σ | v | (x→ e2)K | σ′::τ | w〉 → 〈σ′ | e2[v/x] | K | τ | w〉
〈σ | ((λx.e) v) | K | τ | w〉 → 〈σ | e [v/x] | K | τ | w〉
〈σ | sample | K | τ | w〉 → 〈πR(σ) | cπU (πL(σ)) | K | τ | w〉
〈σ | opn(v1, . . . , vn) | K | τ | w〉 → 〈σ | δ(opn, v1, . . . , vn) | K | τ | w〉 (if defined)
〈σ | if cr then e1 else e2 | K | τ | w〉 → 〈σ | e1 | K | τ | w〉 (if r > 0)
〈σ | if cr then e1 else e2 | K | τ | w〉 → 〈σ | e2 | K | τ | w〉 (if r ≤ 0)
〈σ | factor cr | K | τ | w〉 → 〈σ | cr | K | τ | r × w〉 (provided r > 0)

Fig. 3. Small-step operational semantics

The rules for the semantics are given in figure 3.
The semantics uses continuations for sequencing and substitutions for proce-

dure calls. Since letx = e1 in e2 is the only sequencing construct, there is only
one continuation-builder. The first rule recurs into the right-hand side of a let,
using the left half of the entropy as its entropy, and saving the right half for use
with e2. The second rule (“return”) substitutes the value of the expression into
the body of the let and restores the top saved entropy value for use in the body.
More precisely, we view the third component as an encoded pair of an entropy
value and an encoded entropy stack, as mentioned in section 3.3 The return rule
can be written using explicit projections as follows:

〈σ | v | (x→ e2)K | τ | w〉 → 〈πL(τ) | e2[v/x] | K | πR(τ) | w〉

Note that in the return rule the current entropy σ is dead. Except for the entropy
and weight, these rules are standard for a continuation-passing interpreter for
the lambda-calculus with let.

The δ partial function interprets primitive operations. We assume that all
the primitive operations are measurable partial functions returning real values,
and with the exception of real?, they are undefined if any of their arguments is
a closure. A conditional expression evaluates to its first branch if the condition
is a positive real constant, its second branch if nonpositive; if the condition is
a closure, evaluation is stuck. Comparison operations and the real? predicate
return 1 for truth and 0 for falsity.

The rule for sample uses πU to extract from the entropy a real value in the
interval [0, 1]. The entropy is split first, to make it clear that entropy is never
reused, but the leftover entropy is dead per the return rule.

The rule for factor v weights the current execution by v, provided v is a
positive number; otherwise, evaluation is stuck.

When reduction of an initial configuration halts properly, there are two rel-
evant pieces of information in the final configuration: the result value and the
weight. We define evaluation as taking an extra parameter, a measurable set
of reals. Evaluation produces a positive weight only if the result value is in the
expected set.

3 We defer the explanation of the initial entropy stack to section 5.

5

eval(σ, e,K, τ, w,A) =

w′ if 〈σ | e | K | τ | w〉 →∗ 〈σ′ | r | halt | τ ′ | w′〉,

where r ∈ A
0 otherwise

We will also need approximants to eval:

eval(n)(σ, e,K, τ, w,A) =

w′ if 〈σ | e | K | τ | w〉 →∗ 〈σ′ | r | halt | τ ′ | w′〉

in n or fewer steps, where r ∈ A
0 otherwise

The following lemmas are clear from inspection of the small-step semantics.

Lemma 3. If 〈σ | e | K | τ | w〉 → 〈σ′ | e′ | K ′ | τ ′ | w′〉 then

1. eval(p+1)(σ, e,K, τ, w,A) = eval(p)(σ′, e′,K ′, τ ′, w′, A)
2. eval(σ, e,K, τ, w,A) = eval(σ′, e′,K ′, τ ′, w′, A)

Lemma 4 (weights are Linear).

1.
〈σ | e | K | τ | 1〉 →∗ 〈σ′ | e′ | K ′ | τ ′ | w′〉,

if and only if for any w > 0

〈σ | e | K | τ | w〉 →∗ 〈σ′ | e′ | K ′ | τ ′ | w′ × w〉

2. For all w > 0,

eval(σ, e,K, τ, w,A) = w × eval(σ, e,K, τ, 1, A),

and similarly for eval(n).

The next result is an interpolation theorem, which says that any terminating
computation starting with an expression e begins by evaluating e to a value v,
and then sending that value to the continuation K.

Definition 5. Define � to be the smallest relation defined by the following rules:

Rule 1:
(K, τ) � (K, τ)

Rule 2:
(K ′, τ ′) � (K, τ)

((x→ e)K ′, σ::τ ′) � (K, τ)

Lemma 6. Let

〈σ1 | e1 | K1 | τ1 | w1〉 → 〈σ2 | e2 | K2 | τ2 | w2〉 → . . .

be a reduction sequence in the operational semantics. Then for each i in the
sequence either

6

a. there exists a smallest j ≤ i such that ej is a value and Kj = K1 and τj = τ1,
or

b. (Ki, τi) � (K1, τ1)

Proof (Sketch): By induction on i and inspection of the reduction rules—in par-
ticular, whether they extend, contract, or preserve the continuation and entropy
stack, and whether they produce a value.

Theorem 7 (Interpolation Theorem). If

〈σ | e | K | τ | w〉 →∗ 〈σ′′ | v′′ | halt | τ ′′ | w′′〉

then there exists a smallest n such that for some quantities σ′, v, and w′,

〈σ | e | K | τ | w〉 →n 〈σ′ | v | K | τ | w′〉 →∗ 〈σ′′ | v′′ | halt | τ ′′ | w′′〉

Proof. If K = halt, then the result is trivial. Otherwise, apply the invariant of
the preceding lemma, observing that (halt, τ ′) 6� (K, τ).

Notice that both the lemma and the theorem would be false if our language
contained jumping control structures like call/cc.

Theorem 8 (Genericity Theorem). Let w1 > 0 and let n be the smallest
integer such that for some quantities σ′, v, and w′,

〈σ | e | K1 | τ1 | w1〉 →n 〈σ′ | v | K1 | τ1 | w′ × w1〉

then for any K2, τ2, and w2,

〈σ | e | K2 | τ2 | w2〉 →n 〈σ′ | v | K2 | τ2 | w′ × w2〉

Proof. Let R be the smallest relation defined by the rules

((K1, τ1), (K2, τ2)) ∈ R
((K, τ), (K ′, τ ′)) ∈ R

(((x→ e)K,σ::τ), ((x→ e)K ′, σ::τ ′)) ∈ R

Extend R to be a relation on configurations by requiring the weights to be related
by a factor of w2/w1 and the remaining components of the configurations to
be equal. It is easy to see, by inspection of the small-step rules, that R is a
bisimulation over the first n steps of the given reduction sequence.

This theorem tells us that in the interpolation theorem, σ′, v, and w′ are
independent of K.

5 From Evaluations to Measures

Up to now, we have considered only single runs of the machine, using partic-
ular entropy values. To obtain the overall behavior of the program we need to
integrate over all possible values of the entropies σ and τ :

7

Definition 9. The measure of e and K at A, µ(e,K,A) is defined as

µ(e,K,A) =
∫∫

eval(σ, e,K, τ, 1, A) dσ dτ

More precisely, for any e and K, the mapping A 7→ µ(e,K,A) is a measure. It
is similar to both Culpepper and Cobb’s µe(A) and Borgström et al.’s [[e]]S(A),
but whereas they define measures on arbitrary syntactic values, our µ(e,K,−)
is a measure on the reals.

Encoding entropy stacks as entropy values enables the simple definition
above; if we represented stacks directly the number of integrals would depend
on the stack depth. Note that even for the base continuation (K = halt) we
still integrate with respect to both σ and τ . Since S 6∼= S0, there is no encoding
for an empty stack as an entropy value; we cannot just choose a single arbitrary
τinit because µS({τinit}) = 0. But since evaluation respects the stack discipline,
it produces the correct result for any initial τinit. So we integrate over all choices
of τinit, and since µS(S) = 1 the empty stack “drops out” of the integral.

As before, we will also need the approximants:

µ(n)(e,K,A) =
∫∫

eval(n)(σ, e,K, τ, 1, A) dσ dτ

For these integrals to be well-defined, of course, we need to know that eval
and its approximants are measurable.

Lemma 10 (eval is measurable). For any e, K, w ≥ 0, A ∈ ΣR, and n,

eval(σ, e,K, τ, w,A) and eval(n)(σ, e,K, τ, w,A) are measurable in σ and τ .

Proof (Sketch): The argument goes as follows. Following Borgström et al. [5,
Figure 5], turn the set of expressions and continuations into a metric space by
setting d(cr, cr′) = |r−r′|; d((e1 e2), (e

′
1 e
′
2) = d(e1, e

′
1)+d(e2, e

′
2), etc., setting

d(e, e′) =∞ if e and e′ are not the same up to constants. Extend this to become
a measurable space on configurations by constructing the product space, using
the Borel sets for the weights and the natural measurable space on the entropy
components. Note that in this space, singletons are measurable sets.

The next-configuration function next-state : Config→ Config is measurable;
the proof follows the pattern of Borgström et al. [4, Lemmas 72–84]. It fol-
lows that the n-fold composition of next-state, next-state(n) is measurable, as is
finish ◦next-state(n), where finish extracts the weight of halted configurations.

Let B be a Borel set in the reals and set

C = {(σ, e,K, τ, w) | eval(σ, e,K, τ, w,A) ∈ B}

C is measurable, since it is equal to the countable union⋃
n

((finish ◦next-state(n))−1(B))

Thus eval is measurable with respect to the product space of all of its arguments.

8

To show eval(σ, e,K, τ, w,A) is measurable with respect to (σ, τ) for any fixed
e, K, w, and A, we note that

(σ, τ 7→ eval(σ, e,K, τ, w,A)) = eval ◦ (σ, τ 7→ (σ, e,K, τ, w,A))

The function (σ, τ 7→ (σ, e,K, τ, w,A)) is measurable, as it is just a product of
constant and identity functions. Thus the composition is measurable.

Lemma 11 (measures are monotonic). In the following, e and K range
over closed expressions and continuations, and let A range over measurable sets
of reals.

1. µ(e,K,A) ≥ 0
2. for any m, µ(m)(e,K,A) ≥ 0
3. if m ≤ n, then µ(m)(e,K,A) ≤ µ(n)(e,K,A) ≤ µ(e,K,A)
4. µ(e,K,A) = supn{µ(n)(e,K,A)}

The next set of lemmas show how the measure µ(−,−,−) behaves under the
reductions of the small-step machine. Almost all the calculations in Section 6
depend only on these lemmas.

Lemma 12. µ(p+1)(letx = e1 in e2,K,A) = µ(p)(e1, (x→ e2)K,A).

Proof.

µ(p+1)(letx = e1 in e2,K,A)

=
∫∫

eval(p+1)(σ, letx = e1 in e2,K, τ, 1, A) dσ dτ

=
∫∫

eval(p)(πL(σ), e1, (x→ e2)K,πR(σ)::τ , 1, A) dσ dτ

=
∫∫∫

eval(p)(σ′, e1, (x→ e2)K,σ′′::τ , 1, A) dσ′ dσ′′ dτ (Lemma 1.4 on σ)

=
∫∫

eval(p)(σ′, e1, (x→ e2)K,πL(τ ′)::πR(τ ′), 1, A) dσ′ dτ ′

(Lemma 1.4 on τ ′)

=
∫∫

eval(p)(σ′, e1, (x→ e2)K, τ ′, 1, A) dσ′ dτ ′ (πL(τ ′)::πR(τ ′) = τ ′)

= µ(p)(e1, (x→ e2)K,A)

Lemma 13. µ(p+1)(v, (x→ e)K,A) = µ(p)(e[v/x],K,A)

Proof. Similar.

Lemma 14. µ(p+1)((λx.e v),K,A) = µ(p)(e[v/x],K,A)

Lemma 15. µ(p+1)(opn(v1, . . . , vn),K,A) = µ(p)(δ(opn, v1, . . . , vn),K,A), when
defined.

Lemma 16. µ(p+1)(if cr then e1 else e2,K,A) = µ(p)(e1,K,A) if r > 0,
and µ(p+1)(if cr then e1 else e2,K,A) = µ(p)(e1,K,A) if r ≤ 0.

Proof (14–16). Immediate from the definitions.

9

The property for sample follows a slightly different pattern:

Lemma 17. µ(p+1)(sample,K,A) =
∫
µ(p)(cπU (σ),K,A) dσ

Proof.

µ(p+1)(sample,K,A)

=
∫∫

eval(p+1)(σ, sample,K, τ, 1, A) dσ dτ

=
∫∫

eval(p)(πRσ, cπU (πL(σ)),K, τ, 1, A) dσ dτ

=
∫∫∫

eval(p)(σ2, cπU (σ1),K, τ, 1, A) dσ1 dσ2 dτ (Lemma 1.4)

=
∫∫∫

eval(p)(σ2, cπU (σ1),K, τ, 1, A) dσ2 dτ dσ1 (Lemma 2 twice)

=
∫
µ(p)(cπU (σ1),K,A) dσ1

Lemma 18. µ(p+1)(factor cr,K,A) = r × µ(p)(cr,K,A), provided r > 0.

Proof. Immediate from the definitions and the Linearity Lemma (Lemma 4).

We note that all the relations in these lemmas similarly hold for the unap-
proximated measure µ(−,−,−).

6 The Logical Relation

In this section, we will define a step-indexed logical relation on values, expres-
sions, and continuations, and we prove the Fundamental Property for our rela-
tion.

We begin by defining step-indexed logical relations on closed values, expres-
sions, and continuations.

(v1, v2) ∈ Vn ⇐⇒ v1 = v2 = cr for some r
∨ (v1 = λx.e ∧ v2 = λx.e′

∧ (∀m < n)(∀v, v′)[(v, v′) ∈ Vm =⇒ (e[v/x], e′[v′/x]) ∈ Em])

(e, e′) ∈ En ⇐⇒ (∀m ≤ n)(∀K,K ′)(∀A ∈ ΣR)
[(K,K ′) ∈ Km =⇒ µ(m)(e,K,A) ≤ µ(e′,K ′, A)]

(K,K ′) ∈ Kn ⇐⇒ (∀m ≤ n)(∀v, v′)(∀A ∈ ΣR)
[(v, v′) ∈ Vm =⇒ µ(m)(v,K,A) ≤ µ(v′,K ′, A)]

Note that for all n, Vn ⊇ Vn+1 ⊇ . . ., and similarly for E and K.

We use γ to range over substitutions of closed values for variables, and extend
these relations to substitutions by

(γ, γ′) ∈ GΓn ⇐⇒ dom(γ) = dom(γ′) = Γ
∧ ∀x ∈ Γ, (γ(x), γ′(x)) ∈ Vn

10

Last, we define the logical relations on open terms. In each case, the relation
is on terms of the specified sort that are well-formed with free variables in Γ :

(v, v′) ∈ VΓ ⇐⇒ (∀n)(∀γ, γ′)[(γ, γ′) ∈ GΓn =⇒ (vγ, v′γ′) ∈ Vn]

(e, e′) ∈ EΓ ⇐⇒ (∀n)(∀γ, γ′)[(γ, γ′) ∈ GΓn =⇒ (eγ, e′γ′) ∈ En]

We do not need a version of K indexed by Γ because we only work with closed
continuations.

Our first goal is to show the so-called fundamental property of logical rela-
tions:

Γ ` e exp =⇒ (e, e) ∈ EΓ

Most of the theorem follows by general nonsense about the lambda-calculus
and logical relations, relying mostly on Lemmas 12–18.

We begin with a series of compatibility lemmas. These show that the logical
relations form a congruence under (“are compatible with”) the scoping rules of
values, expressions, and continuations.

Lemma 19 (variables are value-compatible). If x ∈ Γ , then (x, x) ∈ VΓ .

Proof. We must show that for all n and (γ, γ′) ∈ GΓn , (γ(x), γ′(x)) ∈ Vn. But
that is true by the definition of GΓn .

Lemma 20 (λ-expressions are value-compatible). If (e, e′) ∈ EΓ,x, then
(λx.e, λx.e′) ∈ VΓ .

Proof. Without loss of generality, assume x 6∈ Γ , and hence for any γ, (λx.e)γ =
λx.eγ. We must show, for all n, if (γ, γ′) ∈ GΓn , then (λx.eγ, λx.e′γ′) ∈ Vn.

Following the definition of Vn, choose m < n and (v, v′) ∈ Vm. We must
show that (eγ[v/x], e′γ′[v′/x]) ∈ Em. Since m < n, we have (γ, γ′) ∈ GΓm and
(v, v′) ∈ Vm. Therefore (γ[v/x], γ′[v′/x]) ∈ GΓ,xm , so (eγ[v/x], e′γ′[v′/x]) ∈ Em
by the definition of Em.

Lemma 21 (value-compatibility implies expression-compatibility). If
(v, v′) ∈ VΓ , then (v, v′) ∈ EΓ .

Proof. Choose n and (γ, γ′) ∈ GΓn , so we have (vγ, v′γ′) ∈ Vn. We must show
that (vγ, v′γ′) ∈ En.

Following the definition of En, choose m ≤ n, (K,K ′) ∈ Km, and A. Since
m ≤ n, we have (vγ, v′γ′) ∈ Vm, so µ(m)(v,K,A) ≤ µ(v′,K ′, A). Since we have
this for all m ≤ n, we conclude that (vγ, v′γ′) ∈ En.

Lemma 22 (compatibility under application). If (v1, v
′
1) ∈ VΓ and

(v2, v
′
2) ∈ VΓ , then ((v1 v2), (v

′
1 v
′
2)) ∈ EΓ .

11

Proof. Choose n, and assume (γ, γ′) ∈ GΓn . Then (v1γ , v
′
1γ
′) ∈ Vn and

(v2γ, v
′
2γ
′) ∈ Vn. We must show ((v1γ v2γ), (v

′
1γ
′ v′2γ

′)) ∈ En
If v1γ is of the form cr, then µ(m)(v1γ,K,A) = 0 for any m, K, and A, so

by Lemma 11 the conclusion holds.
Otherwise, assume v1γ is of the form λx.e, and so v′1γ

′ is of the form λx.e′.
So choose m ≤ n and A, and let (K,K ′) ∈ Km. We must show that

µ(m)((λx.eγ v2γ),K,A) ≤ µ((λx.e′γ′ v′2γ
′),K ′, A).

If m = 0 the left-hand side is 0. So assume m ≥ 1. Since all the rele-
vant terms are closed and the relations on closed terms are antimonotonic in
the index, we have (λx.eγ, λx.e′γ′) ∈ Vm and (v1γ , v

′
1γ
′) ∈ Vm−1. Therefore

(eγ[v2γ/x], e′γ′[v′2γ
′/x]) ∈ Em−1.

Now, 〈σ | (λx.eγ v2γ) | K | τ | w〉 → 〈σ | eγ[v2γ/x] | K | τ | w〉, and
similarly for the primed side. So we have

µ(m)((λx.eγ v2γ),K,A)

= µ(m−1)(eγ[v2γ/x],K,A) (Lemma 14)

≤ µ(e′γ′[v′2γ
′/x],K ′, A) (by (eγ[v2γ/x], e′γ′[v′2γ

′/x]) ∈ Em−1)

= µ((λx.e′γ′ v′2γ
′),K ′, A)

Lemma 23 (compatibility under operations). If (vi, v
′
i) ∈ VΓ for all i ∈

{1, . . . , k}, then (opk(v1, . . . , vk), opk(v′1, . . . , v
′
k)) ∈ EΓ .

Proof. Similar.

Lemma 24 (halt related to itself). (halt, halt) ∈ K.

Proof. We must show that for any m and any (v, v′) ∈ Vn, µ(m)(v, halt, A) ≤
µ(v′, halt, A). But (v, v′) ∈ Vn implies either v = v′ = cr or both v and v′ are
λ-expressions, in which case both sides of the inequality are 0.

Lemma 25. Given n, and e, e′ with a single free variable x, with the property
that

(∀p ≤ n)(∀v, v′)[(v, v′) ∈ Vp =⇒ (e[v/x], e′[v′/x]) ∈ Ep]
Then for all m ≤ n,

(K,K ′) ∈ Km =⇒ ((x→ e)K, (x→ e′)K ′) ∈ Km
Proof. Choose m ≤ n and (K,K ′) ∈ Km. To show ((x→ e)K, (x→ e′)K ′) ∈
Km, choose p ≤ m, (v, v′) ∈ Vp, and A.

We must show µ(p)(v, (x→ e)K,A) ≤ µ(v′, (x→ e′)K ′, A).
If p = 0, the result is trivial. So assume p > 0 and calculate:

µ(p)(v, (x→ e)K,A)

= µ(p−1)(e[v/x],K,A) (Lemma 13)

≤ µ(e′[v′/x],K ′, A)

= µ(v′, (x→ e′)K ′, A)

12

where the inequality follows from (v, v′) ∈ Vp ⊆ Vp−1 and (K,K ′) ∈ Km ⊆
Kp ⊆ Kp−1.

Lemma 26 (compatibility under let). If (e1, e
′
1) ∈ EΓ and (e2, e2) ∈ EΓ,x,

then (letx = e1 in e2, letx = e′1 in e′2) ∈ EΓ .

Proof. Choose n and (γ, γ′) ∈ GΓn . So we have (e1γ, e
′
1γ
′) ∈ Em for all m ≤ n.

Furthermore, if m ≤ n and (v, v′) ∈ Vm, then (γ[x := v], γ′[x := v′]) ∈ GmΓ,x.
Therefore (e2γ[x := v], e′2γ

′[x := v′]) ∈ Em. So (e2γ, e
′
2γ
′) satisfies the hypothesis

of lemma 25.
So choose m ≤ n and (K,K ′) ∈ Km. Without loss of generality, assume

m > 0. Then by lemma 25 we have

((x→ eγ)K, (x→ e′γ′)K ′) ∈ Km (1)

Choose A. Now we can calculate:

µ(m)(letx = e1γ in e2γ,K,A)

= µ(m−1)(e1γ, (x→ e2γ)K,A) (Lemma 12)

≤ µ(e′1γ
′, (x→ e′2γ

′)K ′, A)

= µ(letx = e′1γ
′ in e2γ

′,K,A)

where the inequality follows from (e1γ, e
′
1γ
′) ∈ Em and (1).

Lemma 27 (compatibility under if). If (v, v′) ∈ VΓ and (e1, e
′
1) ∈ EΓ and

(e2, e2) ∈ EΓ , then (if v then e1 else e2, if v
′ then e′1 else e′2) ∈ EΓ .

Proof. Choose n, (γ, γ′) ∈ GΓn , m ≤ n, (K,K ′) ∈ Km, and A ∈ ΣR. Assume
that m > 0, otherwise the result follows trivially.

Suppose vγ = v′γ′ = cr, and if r > 0. Then

µ(m)(if vγ then e1γ else e2γ,K,A)

= µ(m−1)(e1γ,K,A) (Lemma 16)

≤ µ(e′1γ,K
′, A)

= µ(if v′γ′ then e′1γ
′ else e′2γ

′,K ′, A)

Likewise for r ≤ 0 and e2, e
′
2.

Otherwise, neither vγ nor v′γ′ is a real constant, and both expressions are
stuck and have measure 0.

Everything so far is just an adaptation of the deterministic case. Now we
consider our two effects.

Lemma 28 (compatibility under factor). If (v, v′) ∈ VΓ , then
(factor v, factor v′) ∈ EΓ .

13

Proof. Choose n and (γ, γ′) ∈ GnΓ . We must show (factor vγ, factor v′γ′) ∈ En.
Since (v, v′) ∈ VΓ , it must be that (vγ, v′γ′) ∈ Vn. So either vγ = v′γ′ = cr for
some r, or vγ is a lambda-expression.

Assume vγ = v′γ′ = cr for some r > 0. Choose 1 ≤ m ≤ n, (K,K ′) ∈ Km,
and A ∈ ΣR. Then we have

µ(m)(factor cr,K,A)

= r × µ(m−1)(cr,K,A) (Lemma 18)

≤ r × µ(cr,K
′, A)

= µ(factor cr,K
′, A)

So (factor cr, factor cr) ∈ En as desired.
If vγ is cr for r ≤ 0 or a lambda-expression, then factor vγ is stuck, so

µ(m)(factor cr,K,A) = 0 and the desired result holds again.

Lemma 29 (compatibility of sample).

(sample, sample) ∈ E

Proof. It will suffice to show that for all m, (K,K ′) ∈ Km, and A ∈ ΣR,

µ(m)(sample,K,A) ≤ µ(sample,K ′, A)

At m = 0, the left-hand side is 0 and the result is trivial. If m > 0, then

µ(m)(sample,K,A)

=
∫
µ(m−1)(cπU (σ),K,A) dσ (Lemma 17)

≤
∫
µ(cπU (σ),K

′, A) dσ

= µ(sample,K ′, A)

Now we can prove the Fundamental Property:

Theorem 30 (Fundamental Property).

1. Γ ` e exp =⇒ (e, e) ∈ EΓ
2. Γ ` v val =⇒ (v, v) ∈ VΓ
3. `K cont =⇒ ∀n, (K,K) ∈ Kn

Proof. By induction on the derivation of Γ ` e exp, etc. The base cases are lem-
mas 19 and 24. The lemmas above deal with each of the other scoping rules in
turn.

7 CIU Ordering

The CIU (“closed instantiation of uses”) ordering of two terms asserts that they
yield related observations under a single substitution and a single continuation.
For our purposes, we take the observables to be the behaviors on measurable
subsets of the reals, as we did for the logical relations. In this section, we show
that this relation coincides with the logical relation.

In one direction, this is an easy consequence of the Fundamental Property.

14

Definition 31.

1. If e and e′ are closed expressions, then (e, e′) ∈ CIU iff for all closed K and
measurable A, µ(e,K,A) ≤ µ(e′,K,A).

2. If Γ ` e exp and Γ ` e′ exp, then (e, e′) ∈ CIUΓ iff for all closing substitutions
γ, (eγ, e′γ) ∈ CIU.

Lemma 32 (E ⊆ CIU). If (e, e′) ∈ EΓ then (e, e′) ∈ CIUΓ .

Proof. Choose a closing substitution γ, a closed continuation K, and A ∈ ΣR.
By the Fundamental Property, we have for all n, (γ, γ) ∈ GΓn and (K,K) ∈ Kn.
Therefore, for all n, µ(n)(eγ,K,A) ≤ µ(e′γ,K,A). So

µ(eγ,K,A) = sup
n
{µ(n)(eγ,K,A)} ≤ µ(e′γ,K,A).

Lemma 33 (EΓ ◦ CIUΓ ⊆ EΓ). If (e1, e2) ∈ EΓ and (e2, e3) ∈ CIUΓ , then
(e1, e3) ∈ EΓ .

Proof. Choose n and (γ, γ′) ∈ GnΓ . We must show that (e1γ, e3γ
′) ∈ EΓn . So

choosem ≤ n, (K,K ′) ∈ Km, and A ∈ ΣR. Now we must show µ(m)(e1γ,K,A) ≤
µ(e3γ

′,K ′, A).
We have (e1, e2) ∈ EΓ and (γ, γ′) ∈ GnΓ , so (e1γ, e2γ

′) ∈ En, and by m ≤ n
we have (e1γ, e2γ

′) ∈ Em. So

µ(n)(e1γ,K,A)

≤ µ(e2γ
′,K ′, A) (by (e1γ, e2γ

′) ∈ Em)

≤ µ(e3γ
′,K ′, A) (by (e2, e3) ∈ CIU)

Therefore (e1, e3) ∈ EΓ .

Lemma 34 (CIU ⊆ E). If (e, e′) ∈ CIUΓ then (e, e′) ∈ EΓ .

Proof. Assume (e, e′) ∈ CIUΓ . By the Fundamental Property, we know (e, e) ∈
EΓ . So we have (e, e) ∈ EΓ and (e, e′) ∈ CIUΓ . Hence, by Lemma 33, (e, e′) ∈ EΓ .

Theorem 35. (e, e′) ∈ CIUΓ iff (e, e′) ∈ EΓ .

Proof. Immediate from Lemmas 32 and 34.

8 Contextual Ordering

We begin by defining the contextual ordering as the largest preorder that is
adequate (that is, it distinguishes terms that have different observable behavior
by themselves) and is compatible (closed under context formation). For our
purposes, we take the observables to be the behavior on measurable subsets of
the reals. We will show that the contextual ordering, the CIU ordering, and the
logical relation all coincide.

15

Definition 36 (CTXΓ). CTX is the largest family of relations RΓ such that:

1. R is adequate, that is, if Γ = ∅, then (e, e′) ∈ RΓ implies that for all
measurable subsets A of the reals, µ(e, halt, A) ≤ µ(e′, halt, A).

2. For each Γ , RΓ is a preorder.
3. The family of relations R is compatible, that is, it is closed under the type

rules for expressions:
(a) If (e, e′) ∈ RΓ,x, then (λx.e, λx.e′) ∈ RΓ .
(b) If (v1, v

′
1) ∈ RΓ and (v2, v

′
2) ∈ RΓ , then ((v1 v2), (v

′
1 v
′
2)) ∈ RΓ .

(c) If (v, v′) ∈ RΓ , then (factor v, factor v′) ∈ RΓ .
(d) If (e1, e

′
1) ∈ RΓ and (e2, e

′
2) ∈ RΓ,x,

then (letx = e1 in e2, letx = e′1 in e′2) ∈ RΓ .
(e) If (v1, v

′
1) ∈ RΓ , . . . , (vn, v

′
n) ∈ RΓ ,

then (opn(v1, . . . , vn), opn(v′1, . . . , v
′
n)) ∈ RΓ .

(f) If (v, v′) ∈ RΓ , (e1, e
′
1) ∈ RΓ , and (e2, e

′
2) ∈ RΓ ,

then (if v then e1 else e2, if v
′ then e′1 else e′2) ∈ RΓ .

Note, as usual, that the union of any family of relations satisfying these
conditions also satisfies these conditions, so the union of all of them is the largest
such family of relations.

Definition 37. If Γ ` e exp and Γ ` e′ exp, we say e and e′ are contextually
equivalent (e =ctx e

′) if both (e, e′) ∈ CTXΓ and (e′, e) ∈ CTXΓ .

We begin with a lemma due to Pitts [14].

Lemma 38. If (K,K ′) ∈ Kn and (v, v′) ∈ Vn, then

((z → (z v))K, (z → (z v′))K ′) ∈ Kn+2

Proof. Let K1 denote (z → (z v))K, and let K ′1 denote (z → (z v′))K ′. To
show (K1,K

′
1) ∈ Kn+2, choose 2 ≤ m ≤ n + 2, (u, u′) ∈ Vm, and A ∈ ΣR. We

must show
µ(m)(u,K1, A) ≤ µ(u′,K ′1, A)

There are two possibilities for (u, u′) ∈ Vm:
1. u = u′ = cr. Then 〈σ | cr | K1 | τ | w〉 → 〈σ | (cr v) | K | τ | w〉, which

is stuck, so µ(m)(u,K1, A) = 0 ≤ µ(u′,K ′1, A).
2. u = λx.e and u′ = λx.e′ where for all p < m and all (u1, u

′
1) ∈ Vp,

(e[u1/x], e′[u′1/x]) ∈ Ep.
Now, for any σ and w, we have

〈σ | λx.e | K1 | τ | w〉
→ 〈σ | (λx.e v) | K | τ | w〉
→ 〈σ | e[v/x] | K | τ | w〉

so µ(m)(λx.e,K1, A) = µ(m−2)(e[v/x],K,A), and similarly on the primed side
(but with µ(−,−,−) in place of µ(m)(−,−,−) and with equality in place of ≤).

16

Next, observe m − 2 ≤ n, so (v, v′) ∈ Vm−2 and hence (e[v/x], e′[v′/x]) ∈
Em−2 by the property of e and e′ above. Therefore, µ(m−2)(e[v/x],K,A) ≤
µ(e′[v′/x],K ′, A).

Putting the pieces together, we have

µ(m)(λx.e,K1, A)

= µ(m−2)(e[v/x],K,A)

≤ µ(e′[v′/x],K ′, A)

= µ(λx.e′,K ′1, A)

Lemma 39. If (cr, cr′) ∈ E, then r = r′, and in particular, (cr, cr′) ∈ V.

Proof. We prove the contrapositive. Let r 6= r′, and choose A to be a measurable
subset of the reals containing r but not r′. Then we have

µ(cr, halt, A) =
∫∫

eval(σ1, cr, halt, σ2, 1, A) dσ1 dσ2 = IA(r) = 1

µ(cr′ , halt, A) =
∫∫

eval(σ1, cr′ , halt, σ2, 1, A) dσ1 dσ2 = IA(r′) = 0

So (cr, cr′) 6∈ E.

Lemma 40. For all closed values v, if (v, v′) ∈ E, then (v, v′) ∈ V.

Proof. We will show that for all closed values v, v′, if (v, v′) ∈ En+3, then
(v, v′) ∈ Vn, from which the lemma follows.

If v = cr and v′ = cr′ , then by the preceding lemma r = r′, and the result is
trivial. If only one of v and v′ is a constant, then (v, v′) ∈ En+3 is impossible, since
constants and lambda-expressions are distinguishable by real? (which requires
3 steps to do so).

So assume v = λx.e and v′ = λx.e′. To establish (v, v′) ∈ Vn, choose m < n
and (u, u′) ∈ Vm. We must show that (e[u/x], e′[u′/x]) ∈ Em. To do that, choose
p ≤ m, (K,K ′) ∈ Kp, and A ∈ ΣR. We must show that

µ(p)(e[u/x],K,A) ≤ µ(e′[u′/x],K ′, A)

Let K1 = (f → (f u))K and K ′1 = (f → (f u′))K ′. By monotonicity,
(u, u′) ∈ Vp. By Lemma 38, (K ′1,K

′
1) ∈ Kp+2. Furthermore, p ≤ m < n, so

p+ 2 ≤ n+ 1 and therefore (λx.e, λx.e′) ∈ Ep+2. And furthermore, we have

〈σ | λx.e | K1 | τ | w〉 → 〈σ | (λx.e u) | K | τ | w〉 → 〈σ | e[u/x] | K | τ | w〉

and similarly on the primed side.
We can put the results together to get

µ(p)(e[u/x],K,A)

= µ(p+2)(λx.e,K1, A)

≤ µ(λx.e′,K ′1, A)

= µ(e′[u′/x],K ′, A)

17

Theorem 41. EΓ ⊆ CTXΓ .

Proof. We will show that E forms a family of equivalence relations that is ade-
quate and compatible.

Each EΓ is reflexive by the Fundamental Property, and is a preorder because
it is equal to CIUΓ , which is a preorder.

To show that it is adequate, observe that (halt, halt) ∈ K by lemma 24,
hence for any measurable subset A of reals, (e, e′) ∈ EΓ implies µ(e, halt, A) =
µ(e′, halt, A).

The E-compatibility lemmas (Lemmas 21–28) are almost exactly what is
needed for CTX-compatibility. The exceptions are Lemmas 22 and 28, because
their hypotheses refer to VΓ , rather than EΓ . We fill the gap with Lemma 40.
We show how this is done for factor v; the cases for application, primitives,
and conditions are similar.

(v, v′) ∈ EΓ

=⇒ (v, v′) ∈ CIUΓ

=⇒ (∀γ)((vγ, v′γ) ∈ CIU∅)

=⇒ (∀γ)((vγ, v′γ) ∈ E∅)

=⇒ (∀γ)((vγ, v′γ) ∈ V∅) (Lemma 40)

=⇒ (∀γ)((factor vγ, factor v′γ) ∈ E∅)

=⇒ (∀γ)((factor vγ, factor v′γ) ∈ CIU∅)

=⇒ (factor v, factor v′) ∈ CIUΓ

=⇒ (factor v, factor v′) ∈ EΓ

We conclude by showing that the contextual ordering is contained in the the
CIU ordering. We need two more lemmas before proceeding to the theorem.

Lemma 42. If Γ, x` e exp and Γ ` v exp, then

(e[v/x], (λx.e v)) ∈ CIUΓ and ((λx.e v), e[v/x]) ∈ CIUΓ .

Proof. Let γ be a closing substitution for Γ . Then for any σ, closed K, and w,
by lemmas 14 and 11.4 we have

〈σ | (λx.eγ vγ) | K | τ | w〉 → 〈σ | eγ[vγ/x] | K | τ | w〉

Therefore for any A ∈ ΣR, µ((λx.eγ vγ),K,A) = µ(eγ[vγ/x],K,A).

Lemma 43. If (e, e′) ∈ CTXΓ,x, and (v, v′) ∈ CTXΓ , then (e[v/x], e′[v′/x]) ∈ CTXΓ .

Proof. From the assumptions and the compatibility of CTX, we have

((λx.e v), (λx.e′ v′)) ∈ CTXΓ (2)

18

So now we have:

(e[v/x], (λx.e v)) ∈ CIUΓ (Lemma 42)

=⇒ (e[v/x], (λx.e v)) ∈ CTXΓ (CIUΓ ⊆ CTXΓ)

=⇒ (e[v/x], (λx.e′ v′)) ∈ CTXΓ (Equation (2) and transitivity of CTXΓ)

=⇒ (e[v/x], e′[v′/x]) ∈ CTXΓ (Lemma 42 and transitivity of CTXΓ)

Now we are ready to complete the theorem. Here we need to use CIU rather
than E, so that we can deal with only one continuation rather than two.

Theorem 44 (CTXΓ ⊆ CIUΓ). If (e, e′) ∈ CTXΓ , then (e, e′) ∈ CIUΓ

Proof. By the preceding lemma, we have (eγ, e′γ) ∈ CTX. So it suffices to

show that for all A ∈ ΣR, if (e, e′) ∈ CTX∅ and `K cont, then µ(e,K,A) =
µ(e′,K,A).

The proof proceeds by induction on K such that `K cont. The induction hy-
pothesis onK is: for all closed e, e′, if (e, e′) ∈ CTX∅, then µ(e,K,A) = µ(e′,K,A).

If K = halt and (e, e′) ∈ CTX∅, then µ(e, halt, A) = µ(e′, halt, A) by the

adequacy of CTX∅.
For the induction step, consider (x→ e1)K, where x` e1 exp. Choose (e, e′) ∈ CTX∅.

We must show µ(e, (x→ e1)K,A) ≤ µ(e′, (x→ e1)K,A).
By the compatibility of CTX, we have

(letx = e in e1, letx = e′ in e1) ∈ CTX∅ (3)

Then we have

µ(e, (x→ e1)K,A)

= µ(letx = e in e1,K,A) (Lemma 12)

≤ µ(letx = e′ in e1,K,A) (by IH at K, applied to (3))

= µ(e′, (x→ e1)K,A) (Lemma 12)

Thus completing the induction step.

Summarizing the results:

Theorem 45. For all Γ , EΓ = CIUΓ = CTXΓ .

Proof. From Theorems 35, 41, and 44.

9 Reordering Samples

In this section we characterize a class of transformations on the entropy space
that are measure-preserving. We will use one such function in section 10 to justify
reordering let bindings; other such functions may be useful in justifying other
equivalences.

19

Definition 46 (measure-preserving). A function φ : S → S is measure-
preserving when for all measurable g : S→ R+,∫

g(φ(σ)) dσ =
∫
g(σ) dσ

Note that this definition is implicitly specific to the stock entropy measure µS,
which is sufficient for our needs.

More specifically, the kinds of functions we are interested in are ones that
break apart the entropy into independent pieces using πL and πR and then
reassemble the pieces of entropy using ::. Pieces may be discarded, but no piece
may be used more than once.

For example, the following function is measure-preserving:

φ1(σ1::(σ2::σ3)) = σ2::(σ1::σ3)

Or equivalently, written using explicit projections:

φ1(σ) = πL(πR(σ))::(πL(σ)::πR(πR(σ)))

We will use this function in theorem 50 to justify let-reordering. Another ex-
ample is

φ2(σ1::σ2) = σ2

which could be used to justify dropping a dead let binding.
To characterize such functions, we need some auxiliary definitions:

– A path p = [d1, . . . , dn] is a (possibly empty) list of directions (L or R). It
represents a sequence of projections, and it can be viewed as a function from
S to S.

[d1, . . . , dn](σ) = (πd1 ◦ · · · ◦ πdn)(σ)

– A finite shuffling function (FSF) φ is either a path or φ1::φ2 where φ1 and
φ2 are FSFs. It represents the disassembly and reassembly of entropy, and
it can be viewed as a recursively defined function from S to S.

φ(σ) =

{
p(σ) if φ = p

φ1(σ)::φ2(σ) if φ = φ1::φ2

– A sequence of paths is said to be non-duplicating if no path is the suffix of
another path in the sequence.

– An FSF is said to be non-duplicating if the sequence of paths appearing in
its definition is non-duplicating.

Lemma 47. Let p1, . . . , pn be a non-duplicating sequence of paths and g : Sn →
R+. Then ∫

g(p1(σ), . . . , pn(σ)) dσ =
∫
. . .
∫
g(σ1, . . . , σn) dσ1 . . . dσn

20

Proof (Sketch): By strong induction on the length of the longest path in the
sequence, and by the definition of non-duplicating and Lemma 2 (Tonelli).

Theorem 48. If φ is a non-duplicating FSF then φ is measure preserving.

Proof. We need to show that for any g : S→ R+,∫
g(φ(σ)) dσ =

∫
g(σ′′) dσ′′

If φ has paths p1, . . . , pn, then we can decompose φ using s : Sn → S such that

φ(σ) = s(p1(σ), . . . , pn(σ))

where the pi are non-duplicating. Then by Lemma 47 it is enough to show that∫
. . .
∫
g(s(σ1, . . . , σn)) dσ1 . . . dσn =

∫
g(σ′′) dσ′′

We proceed by induction on φ.

– case φ = p. This means that n = 1 and s is the identity function, so the
equality holds trivially.

– case φ = φ1::φ2. If m is the number of paths in φ1, then there must be
s1 : Sm → S and s2 : Sn−m → S such that

s(σ1, . . . , σm, σm+1, . . . , σn) = s1(σ1, . . . , σm)::s2(σm+1, . . . , σn)

We can conclude that∫
. . .
∫
g(s(σ1, . . . , σn)) dσ1 . . . dσn

=
∫
. . .
∫
g(s1(σ1, . . . , σm)::s2(σm+1, . . . , σn)) dσ1 . . . dσn

=
∫∫

g(σ::σ′) dσ dσ′ (IH twice)

=
∫
g(σ′′) dσ′′ (Property 1(4))

10 Commutativity

We are now prepared to prove the commutativity theorem promised at the begin-
ning. We first prove a general theorem relating value-preserving transformations
on the entropy space:

Theorem 49. Let e and e′ be expressions, and let φ : S → S be a measure-
preserving transformation such that for all K and τ ,

(eval(σ, e,K, τ, 1, A) = r > 0) =⇒ (eval(φ(σ), e′,K, τ, 1, A) = r)

Then (e, e′) ∈ CTX.

21

Proof. Without loss of generality, assume e and e′ are closed (otherwise apply
a closing substitution). By Theorem 45, it is sufficient to show that for any K
and A, µ(e,K,A) ≤ µ(e′,K,A). We calculate:

µ(e,K,A)

=
∫∫

eval(σ, e,K, τ, 1, A) dσ dτ

≤
∫∫

eval(φ(σ), e′,K, τ, 1, A) dσ dτ

=

∫∫
eval(σ, e′,K, τ, 1, A) dσ dτ (φ is measure-preserving)

= µ(e′,K,A)

Now we can finally prove the desired equivalence.

Theorem 50. Let e1 and e2 be closed expressions, and {x1, x2} ` e0 exp. Then
the expressions

letx1 = e1 in letx2 = e2 in e0

and
letx2 = e2 in letx1 = e1 in e0

are contextually equivalent.

Proof. Let e and e′ denote the two expressions of the theorem. We will use
Theorem 49. To do so, we will consider the evaluations of e and e′. For each
evaluation, we will use the Interpolation Theorem to define waypoints in the
evaluation. We then use the Genericity Theorem to establish that the ending
configurations are the same.

We begin by watching the first expression evaluate in an arbitrary continua-
tion K, saved entropy τ , and initial weight w:

〈σ | letx1 = e1 in letx2 = e2 in e0 | K | τ | w〉

→ 〈πL(σ) | e1 | (x1 → letx2 = e2 in e0)K | πR(σ)::τ | w〉

→∗ 〈σ1 | v1 | (x1 → letx2 = e2 in e0)K | πR(σ)::τ | w1 × w〉 (Interpolation)

→ 〈πR(σ) | letx2 = e2 in e0[v1/x1] | K | τ | w1 × w〉

→ 〈πL(πR(σ)) | e2 | (x2 → e0[v1/x1])K | πR(πR(σ))::τ | w1 × w〉

→∗ 〈σ2 | v2 | (x2 → e0[v1/x1])K | πR(πR(σ))::τ | w2 × w1 × w〉 (Interpolation)

→ 〈πR(πR(σ)) | e0[v1/x1][v2/x2] | K | τ | w2 × w1 × w〉

Next, we outline the analogous computation with the second expression e′,
starting in a different entropy σ′, but with the same continuation K, saved
entropy τ , and weight w. We proceed under the assumption that e′ reduces to a
value; we will validate this assumption later.

22

〈σ′ | letx2 = e2 in letx1 = e1 in e0 | K | τ | w〉

→ 〈πL(σ′) | e2 | (x2 → letx1 = e1 in e0)K | πR(σ′)::τ | w〉

→∗ 〈σ′2 | v′2 | (x2 → letx1 = e1 in e0)K | πR(σ′)::τ | w′2 × w〉 (Interpolation)

→ 〈πR(σ′) | letx1 = e1 in e0[v′2/x2] | K | τ | w′2 × w〉

→ 〈πL(πR(σ′)) | e1 | (x1 → e0[v′2/x2])K | πR(πR(σ′))::τ | w′2 × w〉

→∗ 〈σ′1 | v′1 | (x1 → e0[v′2/x2])K | πR(πR(σ′))::τ | w′1 × w′2 × w〉 (Interpolation)

→ 〈πR(πR(σ′)) | e0[v′2/x2][v′1/x1] | K | τ | w′1 × w′2 × w〉

To get these computations to agree, we choose σ′ so that the entropies for
e1, e2 and the substitution instances of e0 are the same in both calculations. So
we choose σ′ such that

πL(πR(σ′)) = πL(σ) (entropy for e1)
πL(σ′) = πL(πR(σ)) (entropy for e2)
πR(πR(σ′)) = πR(πR(σ)) (entropy for e0)

This can be accomplished by using φ1 from section 9; we set

σ′ = φ1(σ) = πL(πR(σ))::(πL(σ)::πR(πR(σ)))

Applying the genericity theorem at e1 we conclude that that e1 reduces to a
value at entropy πL(πRσ

′)) = πL(σ) and continuation (x1 → e0[v′2/x2])K, that
v1 = v′1, and that w1 = w′1. Similarly applying the genericity theorem at e2 we
conclude that e2 reduces to a value v′2 = v2 and w2 = w′2. So the two calculations
culminate in identical configurations.

So we conclude that

eval(σ, e,K, τ, 1, A) = eval(φ1(σ), e′,K, τ, 1, A)

φ1 is a non-duplicating FSF, so it is measure-preserving by Theorem 48. Then
by Theorem 49, (e, e′) ∈ CTX. The converse holds by symmetry.

Corollary 51. Let e1 and e2 be expressions such that x1 is not free in e2 and
x2 is not free in e1. Then the expressions

letx1 = e1 in letx2 = e2 in e0

and
letx2 = e2 in letx1 = e1 in e0

are contextually equivalent.

Proof. By the preceding theorem, any closed instances of these expressions are
contextually equivalent, and hence CIU-equivalent. Hence the open expressions
are CIU-equivalent, and hence contextually equivalent.

23

11 Formalization

We have formalized the development through Section 9 using Coq 8.6. For the
most part, the proofs directly follow the proofs in the paper. We have not for-
malized the proof of the measurability of eval.

We use the Autosubst library [16] to manage binders in the syntax and the
Coquelicot library [3] for representing and reasoning about real numbers. In ad-
dition to the axioms provided by the Coquelicot library, we also have axiomatized
the entropy source and basic properties of Lebesgue integration, such as linear-
ity and monotonicity, Lebesgue’s monotone convergence theorem, and Tonelli’s
theorem, for integration with respect to the measure on the entropy source. We
have also taken functional extensionality and restricted forms of the law of the
excluded middle as axioms.

12 A Variation

Because our proofs were formalized, it was relatively easy to experiment with
variations on our definitions.

In particular, the proofs as presented depend on the existence of an opera-
tion real? to distinguish between real constants and lambda-abstractions. As a
result, our definition of V is familiar. However, if we change the definition of V,
we can obtain all our results without relying on the existence of the reflective
operator real?.

The necessary change is to allow V to relate an lambda-abstraction and
constant when the application of the lambda-abstraction would result in an
error (either a stuck configuration or non-termination). For example, λx.(cr x)
should be related to cr. Relating these terms is sensible because (in the absence
of real?):

– Continuations that treat the terms as constants cannot distinguish the terms.
Misusing the lambda-abstraction will result in a 0 on the left-hand side of
the inequality in the definition of E.

– Continuations that treat the terms as functions cannot distinguish the terms.
Misusing the constant as an abstraction will result in a 0 on the right-
hand side of the inequality of the definition of E, but correctly applying
the lambda-abstraction will either not terminate with the given fuel or will
result in the same error, both of which result in a 0 on the left-hand side of
the inequality.

Since all erroneous terms are indistinguishable (all evaluating to 0), the con-
crete change is to add the following disjunct to the definition of V:

v1 = λx.e ∧ v2 = cr
∧ (∀m < n)(∀v)((e[v/x], loop) ∈ Em)

where loop is defined as ((λx.(x x)) (λx.(x x))), or any other non-terminating
expression. If the cause of the error (i.e., from applying a constant as if it were an

24

abstraction) were somehow observable through µ, loop would have to be replaced
with a term that generated that specific error.

With this change, our Coq development goes through with only local changes.

13 Related Work

Our language and semantics are similar to those of Borgström et al. [5] and
Culpepper and Cobb [7], both of which include continuous random variables and
scoring (or “soft observations”). Like Borgström et al. [5], our language is un-
typed and thus includes recursion and non-termination, and we define its mean-
ing in terms of a small-step reduction semantics. However, we adapt the seman-
tics to use the “splitting” entropy measure space from Culpepper and Cobb [7],
so that the entropy can be divided into independent parts based on the syntac-
tic structure of the expression being evaluated. That makes the construction of
the measure-preserving entropy-shuffling functions for let-reordering tractable.
This construction would not work in the semantics of Borgström et al. [5], where
the entropy is accumulated in a sequence.

The construction of our logical relation follows the tutorial of Pitts [14] on
the construction of biorthogonal, step-indexed [1] logical relations. Instead of
termination, we use the program measure as the observable behavior, following
Culpepper and Cobb [7]. But unlike that work, where the meaning of an ex-
pression is a measure over arbitrary syntactic values, we define the meaning of
an expression and continuation together (representing a whole program) as a
measure over the reals. This allows us to avoid the complication of defining a
relation on measurable sets of syntactic values [7, the A relation].

There has been previous work on contextual equivalence for probabilistic
languages with only discrete random variables. In particular, Bizjak and Birkedal
[2] define a step-indexed, biorthogonal logical relation whose structure is similar
to ours, except that they sum where we integrate, and they use the probability
of termination as the basic observation whereas we compare measures. Others
have applied bisimulation techniques [6, 15] to languages with discrete choice;
Ehrhard et al. [8] have constructed fully abstract models for PCF with discrete
probabilistic choice using probabilistic coherence spaces.

Staton et al. [18] gives a denotational semantics for a higher-order, typed lan-
guage with continuous random variables, scoring, and normalization but without
recursion. Using a variant of that denotational semantics, Staton [17] proves the
soundness of the let-reordering transformation for a first-order language.

14 Open Problems and Future Work

We now have several different definitions of contextual equivalence for probabilis-
tic programming languages. One set of open problems is to relate these different
languages and definitions:

25

– Borgström et al. [5] has a language similar to ours, but their entropy space
(“traces”) consists of finite sequences of real numbers, and their semantics
threads the sequence through evaluation, in contrast to our “entropy split-
ting” semantics. Their measure on traces also differs from ours. They have
an operational semantics, so they implicitly have a contextual preorder. It
would be enlightening to know if it coincided with ours.

– A limitation of our semantics is that it does not distinguish among raising an
error (like trying to apply a constant) and failing to terminate: all contribute
0 to the measure. It might be useful to refine the semantics to distinguish
these cases.

26

Bibliography

[1] Ahmed, A.J.: Step-indexed syntactic logical relations for recursive and
quantified types. In: Proc. 15th European Symposium on Programming
(ESOP ’06). pp. 69–83 (2006)

[2] Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In:
Proc. 18th International Conference on Foundations of Software Science and
Computation Structures. pp. 279–294. FoSSaCS ’15 (2015)

[3] Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of
real analysis for coq. Mathematics in Computer Science 9(1), 41–62 (2015)

[4] Borgström, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-
calculus foundation for universal probabilistic programming (long version)
(Jan 2017), https://arxiv.org/abs/1512.08990

[5] Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: Proc. 21st ACM
SIGPLAN International Conference on Functional Programming. pp. 33–
46. ICFP ’16 (2016)

[6] Crubillé, R., Lago, U.D.: On probabilistic applicative bisimulation and call-
by-value λ-calculi. In: Proc. 23rd European Symposium on Programming.
pp. 209–228. ESOP ’14 (2014)

[7] Culpepper, R., Cobb, A.: Contextual equivalence for probabilistic programs
with continuous random variables and scoring. In: Proc. 26th European
Symposium on Programming. pp. 368–392. ESOP ’17 (2017)

[8] Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Proc. 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’14). pp. 309–
320 (2014)

[9] Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum,
J.B.: Church: a language for generative models. In: Proc. 24th Conference
in Uncertainty in Artificial Intelligence. pp. 220–229. UAI ’08 (2008)

[10] Kiselyov, O., Shan, C.: Embedded probabilistic programming. In: Proc.
IFIP TC 2 Working Conference on Domain-Specific Languages. pp. 360–
384. DSL ’09 (2009)

[11] Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order proba-
bilistic programming platform with programmable inference (Mar 2014),
http://arxiv.org/abs/1404.0099

[12] Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic
inference by program transformation in hakaru (system description). In:
Proc. 13th International Symposium on Functional and Logic Programming.
pp. 62–79. FLOPS ’16 (2016)

[13] Paige, B., Wood, F.: A compilation target for probabilistic programming
languages. In: Proc. 31th International Conference on Machine Learning.
pp. 1935–1943. ICML ’14 (2014)

[14] Pitts, A.M.: Step-indexed biorthogonality: a tutorial example. In: Ahmed,
A., Benton, N., Birkedal, L., Hofmann, M. (eds.) Modelling, Control-
ling and Reasoning About State. Dagstuhl Seminar Proceedings (2010),
http://drops.dagstuhl.de/opus/volltexte/2010/2806/

[15] Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic
higher-order languages. In: Proc. 43rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 595–607. POPL ’16
(2016)

[16] Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de bruijn
terms and parallel substitutions. In: Proc. 6th International Conference on
Interactive Theorem Proving. pp. 359–374. ITP ’15 (2015)

[17] Staton, S.: Commutative semantics for probabilistic programming. In: Proc.
26th European Symposium on Programming. pp. 855–879. ESOP ’17 (2017)

[18] Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics
for probabilistic programming: higher-order functions, continuous distribu-
tions, and soft constraints. In: Proc. 31st IEEE Symposium on Logic in
Computer Science. pp. 525–534. LICS ’16 (2016)

[19] Wand, M., Clinger, W.D.: Set constraints for destructive array update op-
timization. J. Funct. Program. 11(3), 319–346 (2001)

[20] Wood, F., van de Meent, J., Mansinghka, V.: A new approach to proba-
bilistic programming inference. In: Proc. 17th International Conference on
Artificial Intelligence and Statistics. pp. 1024–1032. AISTATS ’14 (2014)

28

